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Bogoyavlensky-Volterra systems

Stelios P. Kouzaris

Abstract

Results on the Volterra model which is associated to the simple Lie algebra
of type A,, are extended to the Bogoyavlensky-Volterra systems of type B,,C,,
and D,. In particular we find Lax pairs, Hamiltonian and Casimir functions
and multi-Hamiltonian structures. Moreover, we investigate recursion opera-
tors, higher Poisson brackets and master symmetries. In additions we give, for
the first time a bi-Hamiltonian formulation of the Volterra-B,, system using a
negative recursion operator.

1. Introduction

The Volterra lattice is the system of o.d.e.’s

dvi

dt :Ui(vi+1—vi_1) ) i=1,2,...,n , (1.1)

where vg = v,11 = 0. These equations were studied originally by Volterra in ref.[17]
to describe population evolution in a hierarchical system of competing species. The
importance of this system derives from the fact that it can be considered as a discrete
analogue of the Korteweg-de Vries equation. This system was solved by Kac and
Van Moerbeke [10] using a discrete version of inverse scattering. There is also an ex-
plicit solution by Moser in [12]. Finally, Damianou [4] constructed Multi Hamiltonian
structures and master symmetries for the system.

Bogoyavlensky in 1988 constructed dynamical systems connected with simple Lie al-
gebras that generalize the Volterra system. In particular, the Volterra lattice (also
known as KM system) is related to the root system of a simple Lie algebra of type
A,,. For more details see ref.[1],[2].

In this paper we investigate the Bogoyavlensky-Volterra systems associated with the
classical Lie algebras.

In Section 2 we describe the construction of the systems. We obtain the Bogoyavlensky-
Volterra (BV') system for each classical Lie algebra G.
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In Section 3 we investigate the BV system of type B,1+1. We find a Lax-pair (L, B)
for every n > 2. When n is even, we define two compatible brackets 71,73 which
define a recursion operator R = mam; ! This recursion operator produces compatible
Poisson brackets ma;11 = RI7; and the constants of motion are in involution for every
7 =1,2,3,.... Finally, we give a bi-Hamiltonian formulation of the BV B, ;1 system.
In Section 4 we find master symmetries of the BV B, ;1 system as well as the rela-
tions which they satisfy. We do not present the analogous results for the C), 1 system
since it is equivalent to the B,, 1 system.

In Section 5 we investigate the BV system of type D,,+1. We find again a Lax pair
(L, B) for every n > 4 and, when n is odd, we define two compatible Poisson brackets
m,73. We also describe the Hamiltonian formulation and compute the Casimirs. A
bi-Hamiltonian formulation of the BV D, ;1 system is still an open problem.

2. Definition of the systems

We now describe the construction of the generalized Volterra systems of Bogoyavlen-
sky (see [1],[2]).

Let G be a simple Lie algebra (rank G = n) and II = {w; wo, . ..,wy,} the Cartan-Weyl
basis of simple roots in G (ref.[3] ). There are unique positive integers k; such that

kowg + kiwr + -+ -+ kpwy, =0, (21)

where kg = 1 and wy is the minimal negative root.
We consider the following Lax pairs:

L = [B1], (2.2)
L(t) = > bilt)ew, +ewt+ Y. [ew.ew]
i=1 1<i<j<n

n
k;
B(t) = Z 5 (t)e_Wi +e_w, -
=1
Let H be a Cartan subalgebra of G . For every root w, € H* there is a unique H,,, € H
such that w (h) = k(H,,,h) ¥V h € H, where k is the Killing form and H* is the dual
space of H. We also have an inner product on H*such that (w,,wp) = k (H,,, Hy,)-

We set
1 if (wi,wj>7é0andi<j
-1 if (wi,w;)#0and i > j

The vector equation (2.2) is equivalent to the dynamical system
n

; kjcij
bi=—>_ b (2.4)

Jj=1
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We determine the skew-symmetric variables
.”L'ij = Cijbflbgl, l‘ji = —.Z‘ij, l‘jj =0 , (25)

which correspond to the edges of the Dynkin diagram for the Lie algebra G , connecting
the vertices w; and wj.
The dynamical system (2.4) in the variables z;; takes the form

n
Tij = Tij Z ks (zis + xj5) - (2.6)
s=1

We recall that the vertices w;,w; of the Dynkin diagram are joined by edges only if
(wi,wj) # 0. Hence x;; = 0 if there are no edges connecting the vertices w; and w; of
the diagram. We call the equations (2.6) Bogoyavlensky-Volterra system associated
with G ( BV system for short).

We shall now describe the BV system for each simple Lie algebra G. The number
of independent variables x;; (t) is equal to n — 1 and is one less than the number of
variables b; (t) . We use the standard numeration of vertices of the Dynkin diagram
and define the variables uy (t) = ;5 (t) corresponding to the edges of the Dynkin
diagram with increasing order of the vertices (i < 7).

The phase space consists of variables u; , 1 <i <mn, with u; >0 .

An+1

w1 w3 Wn Wn+1

wo
O Uy - Us O U

wo=— (w1 +ws+ - wWny1) k=1 i=1,...,n+1

U1 =urug, U =ui(Uig1 —ui—1) 2<i<n—1, U, =—up_1u, (BV Api1)

Bn+1

w1 w3 Wn Wn+1

w2
) CIEa O:;:O
O Uy ~ U O u

mn

woz—(w1+2w2—|—~--—|—2wn+1) ki=1k=2 i=2,...,n+1

U = Uq (u1 + QUQ), Uo = Uo (2’&3 — ’U,l) , Up = —2Up_1Up (BV Bn+1)

’L.LZ' :2ui(ui+1 —’U,ifl) 3§z§n—1
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w1 w2 w3 Wn, Wn41

O—O0—%—0O  O===0

n

woz—(2w1+~~+2wn+wn+1) kz:2 i:1,...7n s kn+1:1

l.Ll = 2U1U2, ’LLZ = 2ui(ui+1 - ui_l) 2 S ) S n—2 (BV Cn+1)

’L.Ln,1 = unfl(un - 2un72)7 un = _un(un + 2’[1/71,1)

Dn+1

w1 w2
M)
O—7f— O—5——0O

wo=— (w1 +2wa+ -+ 2wnp_1 +wp +wnt1)
klzl,kn:].,kn+1:1,k‘i:2 i:27...,n—1

7:L1 = U1 (2“2 + Ul) s 'L‘LQ = U2 (2U3 — ul) y (BV Dn+1)

Ui = 2ui(Uig1 —ui—1) 3<1<n—3, Upg = Up—2 (Up + Up—1 — 2Up_3) ,

’l.l,n,1 = Un-—1 (un —Unp—1 — 2un72) 5 un = —Un (un —Up—1+ 2un72) .

3. The BV B,,;1 system and its Poisson bracket

Recall the BV B, 11 system (u; > 0) .

= up(ur +2u2), o =uz (2us —u1), Uy = —2Up_1Uy, .

;= 2ui(uipr — i) 1=3,....,n—1.
We rescale the coordinates
V1 = Up ,1}7;=2Ui i:2,...,n,

to obtain the equivalent system

1-)1 =V (’Ul -|—’U2) s ’Ul = vi(vi+1 — ’Ul',l), ’Un = —Up—1Un 1= 2, ey, — 1.
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Before giving the Lax pair for the system (3.3) we introduce some matrix notations:

w0 5) 0 (88).

Y,i 1 v/ ViUi+1 0 7 Yb _ 3 0 U1 )
2 0 V/ViVit1 2\ —v1 O
It turns out the equations (3.3) are equivalent to the Lax pair L= [L, B], where L, B
are (n+ 1) x (n + 1) matrices

[0 0 -+ 0 L o]
0 o X, O - @)
L=| X, O T , (3.5)
0 o . . X3 @)
Non S Xy 0O X,
L iy/U1 o -+ 0 Xy O |
T0 0 —iyoo —iyoo; 0 0 ]
0 O Y, 0] D)
O 0 ©O :
B= 0 -Y,-1 O 0 Yy 0
%m 10 0] Y; O
/o102 : =Y @) @) O Y,
0 : 0 ~Ys3 0 o O
L 0 0 0 -Ys O Yy |
The functions Hoj, = iTT‘(Lélk) ,k=1,2,... are constants of motion for the system.

We use the old variables b; appearing in the equations (2.4) in order to find a cubic
bracket w3 for the system. The equations (2.4) in the case of the Lie algebra B, 1
become

by = 203", by=—2b3" + b7, buyy = 20, (3.6)

b = =207, —bl) j=3.....n

The dynamical system (3.6) can be written in Hamiltonian form b; = {b;, H}, with
n+1

Hamiltonian H = logb; + 2 ijz

{bj,bj+1} = _{ijrlvbj} =1 5 fOI'j = 1,27...,TL . (37)

logb; and a constant Poisson bracket
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—1

All other brackets are zero. In terms of the variables v; (v = by 'by !, v = 2b;1bk+1,

k=2,...,n) the above skew-symmetric bracket, which we denote by =3, is given by
{vi,v2} = v1v2 (201 + v2) (3.8)
{vi,vi_,_l} = UViVi+1 (’01'4’1)1‘4_1), i:2,...,nf 1
{vi,viga} = vV 1Vigo, i=1,...,n =2,

and all other brackets are zero.
Suppose that n is even (n = 21) and we look for a bracket m; which satisfies

7T3VH2 = 7T1VH4.

We define the skew-symmetric matrix

1 1 1 1

0 -5 wo T o
1 _ 1 _1 _1
v1 O v2 v2 V2

1 .
. o3

w = 1 : . 0 _ 1 _ 1 ) (39)

v1 . Un—2 Un—2
1 1 e 1 __1
v1 v2 Un—2 0 Un—1
1 1 1 1
vl Vo Un—2 Un—1 O

and we define m; = w™! (i.e. {visvit,, = (w‘l)ij ).

Theorem 3.1 The brackets 71, w3 satisfy:

(i) 1, w3 are Poisson.

(i1) The function $Hy = £Tr(L*) =37, (302 + vi—1v;) is the Hamiltonian of the
BV Bj,+1 system with respect to the bracket my.

(#i) m1 , w3 are compatible.

Proof. (i) Changing variables in the Poisson tensor (3.7) preserves the Jacobi identity
and therefore 73 is a Poisson bracket.

In order to prove that 7 is a Poisson bracket we consider the 2-form

1< 1
w = 5 Z wijdvi A d’Uj = Z 7fd?)1' A de . (310)

(%
i,j=1 1<i<j<n "

Since the 2-form w is closed, (i.e. dw = 0), m; = w ™! satisfies the Jacobi identity ( see
[15], page 11 ) and therefore 7 is Poisson.
(i) follows from simple calculations.
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(797) Tt is well-known, see [5], that if a Poisson tensor is a Lie derivative of another,
then the two tensors are compatible. We will see later, in the next section, that s is
the Lie derivative of m; in the direction of a master symmetry and this fact makes my
,m3 compatible. O

Finally, we define a sequence of Poisson brackets mp;_1 , j = 1,2, ... which are com-
patible and the constants of motion are in involution with respect to each mp;_1.
Since the 2-tensor m is invertible we can define the recursion operator R = w37 !
We define the higher order Poisson tensors

Toji1 = Rim ,j=1,2,... (3.11)
Using standard theory of recursion operators [5], [11], [14] we obtain the following

theorem.

Theorem 3.2 The sequence of higher Poisson tensors and invariants satisfy:
(Z) 7T2j+1VH21' = 71'2j_1VH21'+2 B VZ B j .

(i) Ho; are in involution with respect to all Poisson brackets.

(44¢) w41 are all compatible Poisson brackets.

To define a bi-Hamiltonian formulation of the BV B, 11 system (n = 2l) we use an
idea due to Damianou [6].
We define the inverse of the recursion operator R

N = R '= 7r17r3_1
m_1 = Nm= 71'17T§17r1.
Then the poisson bracket m_; satisfies:
7T,1VH4 = 7T1VH2.

Therefore the BV B,, ;1 system has a bi-Hamiltonian formulation.
We give an example of the bracket m_; for n = 4. First we define the skew-symmetric
matrix A by

ajo = ’U%Ug (vg + vi + 2v9v3 + 21}31}4)

as3 vlvg (vg + UZ + 2v1v9 + vovg + 21)31)4)

as4 v1v3 (1)32, + v3 4 20102 + 20303 + U3U4)

Aoy = —vlvg (v% + v% + vZ + 2v1v9 + 20903 + 2v3v4 + 1121)4)
a3z = —va%vgl (21}% + 1)32, + vf + 20109 + 2v9v3 + 21131)4)
aly = ’U%U%U;l (v% + v§ + vi + 2v1v9 4 20003 + 21}31}4) .

The matrix of the tensor w_; is defined by 7_1 = %A where

d = /det 3 = v1V2v3v4 (20103 + 201V + Vov4) .
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More generaly, we define
T_(aj41 = N/m_y  j=1,2,3,...
and we obtain a multi-Hamiltonian formulation
mVHy=n_1VHy=n_3VHg="--.

Remark 1: The Poisson bracket 73 is invertible since detms is equal to the product
of v/detm; with the non—zero eigenvalues of L.

Remark 2: Since the functions Hs, Hy, ..., Hy; are independent and in involution
the BV By system is integrable.

4. Master symmetries of the BV B,,;; system

The master symmetries were used to generate nonlinear Poisson brackets and higher
order invariants. For the definition and examples of master symmetries see [7], [8],
(9], [13], [14], [16]. In this section we find master symmetries for the system (3.3) and
derive the relations which they satisfy.

We consider

o 9 = 0 0
m™ = V1Ug (2’U1 + ’UQ) 871)1 AN 871]2 + Z Vi Vi+1 (7)2' + 'Ui+1) % AN 31}4-"_1
i=2 v ’
n—2
0 0 1 1
+ Z 'Ui’Ui.t,.lUi_A,_Q% A m y ™= Z —Edvi A dU]
=2 1<i<j<n
The recursion operator is then
- 0
R=mm! = Z a;;dv; ® Do (4.1)
ij=1 '

We now prove that m; and w3 are compatible. It is enough to show that 73 = Lz, m;
for some vector field Z;. We define

Z1 = R (Zo) = Zaijdvj ® 87 (Z()) = Z Zvjaij 87 s
i i ; i

where Zj is the Euler vector field

~ 0
i=1
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Using the formula

{f:9}n = XASs 9} — {1, X (@)} — {X(F), 9}1 (4.3)

it is easy to check that
Lz, (m1) = =33 , (4.4)

and therefore 73 is the Lie-derivative of 1 in the direction of the vector field Z;. This
makes 71 compatible with w3 and completes the proof of Theorem 1.
Using the recursion operator we generate the master symmetries

Zi=R'Zy . (4.5)
One calculates that
LZO (71'1):—71'1 s LZU (7T3):7T3 ,LZO (HQ):2H2 . (46)

Therefore Zjy is a conformal symmetry for m; , w3, and Hy. According to a theorem
of Oevel [14] we end up with the following deformation relations:

(Zi, Xj] = (1 +25) Xiyj, [Zis Zj) =2(F — @) Zivg, Lz, (72j41)
=(2J = 2i = 1) Ta(ij)+1 (4.7)

where X = m3dH2 = mydH4 and X; = R*1X,. We also have

We will not present the results for the BV C), 41 system. In fact the BV C), 41 system
is equivalent to the BV B, ;1 system through the transformation

UL — —Up , U2 —> —Up1 5 vr y Up_1 —> — U , Uy — —UT . (4.9)

5. The BV D, ;; system and its Poisson bracket.

We recall the BV D, 11 system (u; > 0) .

W = up(up 4+ 2u2), U2 =us (2uz —uy),
’lli = 2ui(ui+1—ui_1) i=3,...,n—3
Up—g = un72(un + Up—1 — 2un73)7 Up—1 = unfl(un —Up—1 — 2un72)7
Uy = _un(un — Up—1+ 2un—2) . (51)

We make a linear transformation

vi=u , v;=2u; 1=2,...,n—2 , Up_1 =1Up_1 , Up = Up , (5.2)
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to obtain the equivalent system

v = v (’Ul +U2), V; :vi(viﬂ —’Uifl) 1=2,...n—3 (53)
i}n—Q = Un—Q(Un +vp_1 — vn—S)a r[}n—l = Un—l(vn — Un—1— vn—Q)a
i)n - _Un(vn — Up—1+ Un—?) .

We consider again the 2 x 2 matrices which were defined in (3.4) and we also set

v/ i 1 Un—2U Un—20
X = Un, -Z Un, Y == \/n2n \/n2n 5.4
< —/Un—1 4/Un—1 )’ 2\ —\/Un—2Un—1 \/Un—2VUn—1 )’ (54)

_1 0 Un—1 — Un
W_2<vn—vn1 0 )

Equations (5.3) can be written in a Lax Pair form L = [L, B], where

[0 0 0 NI VO
0 0] X 0] 0]
0 O anz 0]
NG . ' 0O X

L /01 O @] Xs O |

Q
=
<
>

B= 0 -Yt 0 o o)
3V O =Yg 0 Ys O
%\/@ (0] 0] O Y,

0 : O —Ys O O O
i 0 o) O -Y, O Yy |

The invariant polynomials of this system are given by the functions

Hy, Hy,...,H, 1 when nisodd,

Hy Hy,...,H, 5,H, 1 when n is even ,
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where Hy, = +Tr(L?*) .

As in the case of the BV B, system we use the variables b; ,1 < j < n+ 1 of
the equations (2.4) in order to find a cubic bracket w3 of the BV D, 11 system. The
dynamical system (2.4) in the case of the Lie algebra of type D, 11 can be written in
Hamiltonian form b; = {b;, H}, with Hamiltonian

n—1
H =loghy +2) logb; +logby, +logbn i1 , (5.6)
j=2
and Poisson bracket
{bj,bj+1} = 7{bj+1,bj}:1 ,fOI‘j:LZ,...,Tlfl (57)
{bn—h bn+1} = - {bn-&-la bn—l} = 17
all other brackets are zero. In the new variables v; (v; = by 'by !, v = Qb,glb;il,
k=2...,n—2 v,1 =0b1 b1 v, = b;ilb;}rl ) the above skew-symmetric
bracket, which we denote by w3, is given by
{1]1, 1}2} = V12 (2’1}1 + Ug) (58)
{vi,vis1} = vivigr (vi +viq1) ,i=2,...,n =3
{Un—2,vn-1} = Vn_20n_1(2Un_1+vn_2)
{’Unfly Un} = 20p-1Un (Un - ’Unfl)
{vi,vig2} = vvip1Vi42,i=1,...,n—3
{’Un_2, Un} = Un—-2Up (vn—2 + 2Un)
{Un737 vn} = Un—3Un—2Un .

All other brackets are zero. As in the case of KM system we suppose that n is odd
(n =2+ 1) and we look again for a bracket w1 which satisfies 73V Hy = 71 VHy.
We define

j—1

V2k+1 . .
Tij = —Tji = V2i—1 H T for i < ], Tii = V21, (59)
ki 2k

and we let m; be the bracket which is defined as follows:

{vi,v;} = (,1)i+j*17[%]+1)[%} for 1<i<j<n-2, (5.10)
{vi, o1} = {vi,vn}:TT[%]+l7[%} for i=1,...,n—2,
1
{'Unflavn} = - {Unvvnfl} = 5 (Un - 'Unfl) .

We obtain the following Theorem:
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Theorem 5.3 (i) 71 , w3 are Poisson.
(i) The function

n—2 n—2
1 1 1
ZHQ = gT’I"(L4) = VUp_2Up + 2’[},”,1’[)” + 7;:2 - ViVi+1 + 5 i:E - U,L‘Q s

is the Hamiltonian of the BV D1 system with respect to the bracket my.
(7i1) The function

n—2
hy = (Un - Un—l) H Vi ,
=1

is the Casimir of the BV D, 1 system in the bracket 1.
(iv) w1 , w3 are compatible.

Proof. (i) We denote {}, the bracket m; of BV D, system and {}, the Poisson
bracket 7, of BV B,, system (n = 2l + 1). Then {}, can be defined as follows:

{vi7vj}d = {vivvj}ba 1§Za]§n*2
1 )
{vi,vn_1}, = {vi,on},= B {vi,vp_1},, 1<i<n—2
1
{vn—1,vn}, = 5 (U — Vn—1) .

We set
[vi, vj, vk] = {vi, {vj, v} } + {vj, {ve, vi}} + {vk, {vi, v;}}
Fori,jk=1,2....n—2

[Vi, vj, Vk]a = [vi, vj, k] = 0 .
Fori¢,7=1,2,...,n—2

[%'Uj,vn—l]d = [Ui,vj,vn]d = 5[ iavjavn—l]b =0.

For:=1,2,...,n—2

Wi, vn—1,0n)da = {vi,{vn-1,vn}a}a + {vn—1,{Vn,vi}a}a + {vn, {vi;vn—1}a}d
1 1 1
= 5{1&, Up — Up—1}d + i{vn—la {vn-1,vi}p}ta + i{vnv {vi, Vn—1}p}a
1 1 1
= 5{”1’77)11—1 — Up_1}p — Z{Un—la {vis Un—1}o}o + Z{Un—la {vi, vn—1}p}p
= 0.
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Therefore, {}4 is Poisson. Relation (5.7) implies that 73 is Poisson as well.
(i), (éi%) follow from simple calculations.

(iv) The proof that the bracket m; + 73 is Poisson is similar to the above proof that
the {}4 is Poisson. |

Remark: Since the functions Hy, Hy, ..., H, 2, h, are independent and in involution
(when n is even, n = 21) the BV Dq;y; system is integrable using the bracket 75 and
since the functions Ha, Hy, ..., H,_1, hy, are independent and in involution (when n
is odd, n = 2] — 1) the BV Do, system is integrable using the brackets m; and 73 .
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