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Abstract
Results on the Volterra model which is associated to the simple Lie algebra

of type An are extended to the Bogoyavlensky-Volterra systems of type Bn,Cn

and Dn. In particular we find Lax pairs, Hamiltonian and Casimir functions
and multi-Hamiltonian structures. Moreover, we investigate recursion opera-
tors, higher Poisson brackets and master symmetries. In additions we give, for
the first time a bi-Hamiltonian formulation of the Volterra-Bn system using a
negative recursion operator.

1. Introduction

The Volterra lattice is the system of o.d.e.’s

dvi

dt
= vi (vi+1 − vi−1) , i = 1, 2, . . . , n , (1.1)

where v0 = vn+1 = 0. These equations were studied originally by Volterra in ref.[17]
to describe population evolution in a hierarchical system of competing species. The
importance of this system derives from the fact that it can be considered as a discrete
analogue of the Korteweg-de Vries equation. This system was solved by Kac and
Van Moerbeke [10] using a discrete version of inverse scattering. There is also an ex-
plicit solution by Moser in [12]. Finally, Damianou [4] constructed Multi Hamiltonian
structures and master symmetries for the system.
Bogoyavlensky in 1988 constructed dynamical systems connected with simple Lie al-
gebras that generalize the Volterra system. In particular, the Volterra lattice (also
known as KM system) is related to the root system of a simple Lie algebra of type
An. For more details see ref.[1],[2].
In this paper we investigate the Bogoyavlensky-Volterra systems associated with the
classical Lie algebras.
In Section 2 we describe the construction of the systems. We obtain the Bogoyavlensky-
Volterra (BV ) system for each classical Lie algebra G.
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In Section 3 we investigate the BV system of type Bn+1. We find a Lax-pair (L,B)
for every n ≥ 2. When n is even, we define two compatible brackets π1, π3 which
define a recursion operator R = π3π

−1
1 . This recursion operator produces compatible

Poisson brackets π2j+1 = Rjπ1 and the constants of motion are in involution for every
j = 1, 2, 3, . . .. Finally, we give a bi-Hamiltonian formulation of the BV Bn+1 system.
In Section 4 we find master symmetries of the BV Bn+1 system as well as the rela-
tions which they satisfy. We do not present the analogous results for the Cn+1 system
since it is equivalent to the Bn+1 system.
In Section 5 we investigate the BV system of type Dn+1. We find again a Lax pair
(L,B) for every n ≥ 4 and, when n is odd, we define two compatible Poisson brackets
π1, π3. We also describe the Hamiltonian formulation and compute the Casimirs. A
bi-Hamiltonian formulation of the BV Dn+1 system is still an open problem.

2. Definition of the systems

We now describe the construction of the generalized Volterra systems of Bogoyavlen-
sky (see [1],[2]).
Let G be a simple Lie algebra (rank G = n) and Π = {ω1,ω2, . . . , ωn} the Cartan-Weyl
basis of simple roots in G (ref.[3] ). There are unique positive integers ki such that

k0ω0 + k1ω1 + · · ·+ knωn = 0 , (2.1)

where k0 = 1 and ω0 is the minimal negative root.
We consider the following Lax pairs:

L̇ = [B,L] , (2.2)

L (t) =
n∑

i=1

bi (t) eωi + eω0 +
∑

1≤i<j≤n

[
eωi , eωj

]
,

B (t) =
n∑

i=1

ki

bi (t)
e−ωi + e−ω0 .

LetH be a Cartan subalgebra of G . For every root ωa ∈ H∗ there is a unique Hωa ∈ H
such that ω (h) = k (Hωa , h) ∀ h ∈ H, where k is the Killing form and H∗ is the dual
space of H. We also have an inner product on H∗such that 〈ωa, ωb〉 = k (Hωa ,Hωb

).
We set

cij =





1 if 〈ωi, ωj〉 6= 0 and i < j
0 if 〈ωi, ωj〉 = 0 or i = j
−1 if 〈ωi, ωj〉 6= 0 and i > j

(2.3)

The vector equation (2.2) is equivalent to the dynamical system

ḃi = −
n∑

j=1

kjcij

bj
. (2.4)
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We determine the skew-symmetric variables

xij = cijb
−1
i b−1

j , xji = −xij , xjj = 0 , (2.5)

which correspond to the edges of the Dynkin diagram for the Lie algebra G , connecting
the vertices ωi and ωj .

The dynamical system (2.4) in the variables xij takes the form

ẋij = xij

n∑
s=1

ks (xis + xjs) . (2.6)

We recall that the vertices ωi, ωj of the Dynkin diagram are joined by edges only if
〈ωi, ωj〉 6= 0 . Hence xij = 0 if there are no edges connecting the vertices ωi and ωj of
the diagram. We call the equations (2.6) Bogoyavlensky-Volterra system associated
with G ( BV system for short).
We shall now describe the BV system for each simple Lie algebra G. The number
of independent variables xij (t) is equal to n − 1 and is one less than the number of
variables bj (t) . We use the standard numeration of vertices of the Dynkin diagram
and define the variables uk (t) = xij (t) corresponding to the edges of the Dynkin
diagram with increasing order of the vertices (i < j).
The phase space consists of variables ui , 1 ≤ i ≤ n, with ui > 0 .

i i i i i
ω1 ω2 ω3 ωn ωn+1

u1 u2 un
. . .

An+1

ω0 = − (ω1 + ω2 + · · ·ωn+1) ki = 1 i = 1, . . . , n + 1

u̇1 = u1u2, u̇i = ui(ui+1 − ui−1) 2 ≤ i ≤ n− 1, u̇n = −un−1un (BV An+1)

i i i i i
ω1 ω2 ω3 ωn ωn+1

u1 u2 un
. . .

Bn+1

À

ω0 = − (ω1 + 2ω2 + · · ·+ 2ωn+1) k1 = 1, ki = 2 i = 2, . . . , n + 1

u̇1 = u1 (u1 + 2u2) , u̇2 = u2 (2u3 − u1) , u̇n = −2un−1un (BV Bn+1)

u̇i = 2ui(ui+1 − ui−1) 3 ≤ i ≤ n− 1
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i i i i i
ω1 ω2 ω3 ωn ωn+1

u1 u2 un
. . .

Cn+1

¿

ω0 = − (2ω1 + · · ·+ 2ωn + ωn+1) ki = 2 i = 1, . . . , n , kn+1 = 1

u̇1 = 2u1u2, u̇i = 2ui(ui+1 − ui−1) 2 ≤ i ≤ n− 2 (BV Cn+1)

u̇n−1 = un−1(un − 2un−2), u̇n = −un(un + 2un−1)

¡
¡

¡¡

@
@

@@

i i i i i

i

i

ω1 ω2 ω3 ωn−2
ωn−1

u1 u2 un−2
. . .

Dn+1 ωn

ωn+1

un−1

un

ω0 = − (ω1 + 2ω2 + · · ·+ 2ωn−1 + ωn + ωn+1)
k1 = 1 , kn = 1 , kn+1 = 1 , ki = 2 i = 2, . . . , n− 1

u̇1 = u1 (2u2 + u1) , u̇2 = u2 (2u3 − u1) , (BV Dn+1)

u̇i = 2ui(ui+1 − ui−1) 3 ≤ i ≤ n− 3 , u̇n−2 = un−2 (un + un−1 − 2un−3) ,

u̇n−1 = un−1 (un − un−1 − 2un−2) , u̇n = −un (un − un−1 + 2un−2) .

3. The BV Bn+1 system and its Poisson bracket

Recall the BV Bn+1 system (ui > 0) .

u̇1 = u1 (u1 + 2u2) , u̇2 = u2 (2u3 − u1) , u̇n = −2un−1un . (3.1)

u̇i = 2ui(ui+1 − ui−1) i = 3, . . . , n− 1 .

We rescale the coordinates

v1 = u1 , vi = 2ui i = 2, . . . , n , (3.2)

to obtain the equivalent system

v̇1 = v1 (v1 + v2) , v̇i = vi(vi+1 − vi−1), v̇n = −vn−1vn i = 2, . . . , n− 1. (3.3)
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Before giving the Lax pair for the system (3.3) we introduce some matrix notations:

Xi =
( √

vi 0
0 i

√
vi

)
, O =

(
0 0
0 0

)
, (3.4)

Yi =
1
2

( √
vivi+1 0
0 √

vivi+1

)
, Y0 =

i

2

(
0 v1

−v1 0

)
.

It turns out the equations (3.3) are equivalent to the Lax pair L̇ = [L,B] , where L,B

are (n + 1)× (n + 1) matrices

L =




0 0 · · · 0
√

v1 i
√

v1

0 O Xn O · · · O
... Xn O

. . . . . .
...

0 O
. . . . . . X3 O

√
v1

...
. . . X3 O X2

i
√

v1 O · · · O X2 O




, (3.5)

B =




0 · · · · · · 0 − 1
2

√
v1v2 − 1

2

√
v1v2 0 0

... O O Yn−1 O · · · · · · O

... O O O
. . . . . .

...

0 −Yn−1 O O
. . . Y4 O

...
1
2

√
v1v2 O

. . . . . . . . . O Y3 O

1
2

√
v1v2

...
. . . −Y4 O O O Y2

0
... O −Y3 O O O

0 O · · · · · · O −Y2 O Y0




.

The functions H2k = 1
2kTr(L4k) , k = 1, 2, . . . are constants of motion for the system.

We use the old variables bj appearing in the equations (2.4) in order to find a cubic
bracket π3 for the system. The equations (2.4) in the case of the Lie algebra Bn+1

become

ḃ1 = −2b−1
2 , ḃ2 = −2b−1

3 + b−1
1 , ḃn+1 = 2b−1

n (3.6)

ḃj = −2(b−1
j+1 − b−1

j−1) j = 3, . . . , n

The dynamical system (3.6) can be written in Hamiltonian form ḃj = {bj ,H}, with
Hamiltonian H = log b1 + 2

∑n+1
j=2 log bj and a constant Poisson bracket

{bj , bj+1} = −{bj+1, bj} = 1 , for j = 1, 2, . . . , n . (3.7)
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All other brackets are zero. In terms of the variables vj (v1 = b−1
1 b−1

2 , vk = 2b−1
k b−1

k+1,
k = 2, . . . , n ) the above skew-symmetric bracket, which we denote by π3, is given by

{v1, v2} = v1v2 (2v1 + v2) (3.8)

{vi, vi+1} = vivi+1 (vi + vi+1) , i = 2, . . . , n− 1

{vi, vi+2} = vivi+1vi+2, i = 1, . . . , n− 2 ,

and all other brackets are zero.
Suppose that n is even (n = 2l) and we look for a bracket π1 which satisfies

π3∇H2 = π1∇H4.

We define the skew-symmetric matrix

ω =




0 − 1
v1

· · · − 1
v1

− 1
v1

− 1
v1

1
v1

0 − 1
v2

· · · − 1
v2

− 1
v2

... 1
v2

. . . . . .
...

...

1
v1

...
. . . 0 − 1

vn−2
− 1

vn−2

1
v1

1
v2

· · · 1
vn−2

0 − 1
vn−1

1
v1

1
v2

· · · 1
vn−2

1
vn−1

0




, (3.9)

and we define π1 = ω−1 (i.e. {vi, vj}π1
=

(
ω−1

)
ij

).

Theorem 3.1 The brackets π1, π3 satisfy:
(i) π1 , π3 are Poisson.
(ii) The function 1

4H2 = 1
8Tr(L4) =

∑n
i=2

(
1
2v2

i + vi−1vi

)
is the Hamiltonian of the

BV Bn+1 system with respect to the bracket π1.

(iii) π1 , π3 are compatible.

Proof. (i) Changing variables in the Poisson tensor (3.7) preserves the Jacobi identity
and therefore π3 is a Poisson bracket.

In order to prove that π1 is a Poisson bracket we consider the 2-form

ω =
1
2

n∑

i,j=1

ωijdvi ∧ dvj =
∑

1≤i<j≤n

− 1
vi

dvi ∧ dvj . (3.10)

Since the 2-form ω is closed, (i.e. dω = 0), π1 = ω−1 satisfies the Jacobi identity ( see
[15], page 11 ) and therefore π1 is Poisson.
(ii) follows from simple calculations.
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(iii) It is well-known, see [5], that if a Poisson tensor is a Lie derivative of another,
then the two tensors are compatible. We will see later, in the next section, that π3 is
the Lie derivative of π1 in the direction of a master symmetry and this fact makes π1

,π3 compatible.

Finally, we define a sequence of Poisson brackets π2j−1 , j = 1, 2, . . . which are com-
patible and the constants of motion are in involution with respect to each π2j−1.
Since the 2-tensor π1 is invertible we can define the recursion operator R = π3π

−1
1 .

We define the higher order Poisson tensors

π2j+1 = Rjπ1 , j = 1, 2, . . . (3.11)

Using standard theory of recursion operators [5], [11], [14] we obtain the following
theorem.

Theorem 3.2 The sequence of higher Poisson tensors and invariants satisfy:
(i) π2j+1∇H2i = π2j−1∇H2i+2 , ∀ i , j .
(ii) H2i are in involution with respect to all Poisson brackets.
(iii) π2j+1 are all compatible Poisson brackets.

To define a bi-Hamiltonian formulation of the BV Bn+1 system (n = 2l) we use an
idea due to Damianou [6].
We define the inverse of the recursion operator R

N = R−1 = π1π
−1
3

π−1 = Nπ1 = π1π
−1
3 π1.

Then the poisson bracket π−1 satisfies:

π−1∇H4 = π1∇H2.

Therefore the BV Bn+1 system has a bi-Hamiltonian formulation.
We give an example of the bracket π−1 for n = 4. First we define the skew-symmetric
matrix A by

a12 = v2
1v3

(
v2
3 + v2

4 + 2v2v3 + 2v3v4

)

a23 = v1v
2
3

(
v2
3 + v2

4 + 2v1v2 + v2v3 + 2v3v4

)

a34 = v1v
2
3

(
v2
3 + v2

2 + 2v1v2 + 2v2v3 + v3v4

)

a24 = −v1v
2
3

(
v2
2 + v2

3 + v2
4 + 2v1v2 + 2v2v3 + 2v3v4 + v2v4

)

a13 = −v2
1v2

3v−1
2

(
2v2

2 + v2
3 + v2

4 + 2v1v2 + 2v2v3 + 2v3v4

)

a14 = v2
1v2

3v−1
2

(
v2
2 + v2

3 + v2
4 + 2v1v2 + 2v2v3 + 2v3v4

)
.

The matrix of the tensor π−1 is defined by π−1 = 1
dA where

d =
√

det π3 = v1v2v3v4 (2v1v3 + 2v1v4 + v2v4) .
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More generaly, we define

π−(2j+1) = N jπ−1 j = 1, 2, 3, . . .

and we obtain a multi-Hamiltonian formulation

π1∇H2 = π−1∇H4 = π−3∇H6 = · · · .

Remark 1: The Poisson bracket π3 is invertible since detπ3 is equal to the product
of
√

detπ1 with the non–zero eigenvalues of L.
Remark 2: Since the functions H2,H4, . . . , H2l are independent and in involution
the BV B2l+1 system is integrable.

4. Master symmetries of the BV Bn+1 system

The master symmetries were used to generate nonlinear Poisson brackets and higher
order invariants. For the definition and examples of master symmetries see [7], [8],
[9], [13], [14], [16]. In this section we find master symmetries for the system (3.3) and
derive the relations which they satisfy.
We consider

π3 = v1v2 (2v1 + v2)
∂

∂v1
∧ ∂

∂v2
+

n−1∑

i=2

vivi+1 (vi + vi+1)
∂

∂vi
∧ ∂

∂vi+1

+
n−2∑

i=2

vivi+1vi+2
∂

∂vi
∧ ∂

∂vi+2
, π−1

1 =
∑

1≤i<j≤n

− 1
vi

dvi ∧ dvj .

The recursion operator is then

R = π3π
−1
1 =

n∑

i,j=1

αijdvj ⊗ ∂

∂vi
, (4.1)

We now prove that π1 and π3 are compatible. It is enough to show that π3 = LZ1π1

for some vector field Z1. We define

Z1 = R (Z0) =




n∑

i,j

αijdvj ⊗ ∂

∂vi


 (Z0) =

n∑

i=1




n∑

j=1

vjaij


 ∂

∂vi
,

where Z0 is the Euler vector field

Z0 =
n∑

i=1

vi
∂

∂vi
. (4.2)
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Using the formula

{f, g}LXπ = X {f, g}π − {f, X(g)}π − {X(f), g}π (4.3)

it is easy to check that
LZ1 (π1) = −3π3 , (4.4)

and therefore π3 is the Lie-derivative of π1 in the direction of the vector field Z1. This
makes π1 compatible with π3 and completes the proof of Theorem 1.
Using the recursion operator we generate the master symmetries

Zi = RiZ0 . (4.5)

One calculates that

LZ0 (π1) = −π1 , LZ0 (π3) = π3 , LZ0 (H2) = 2H2 . (4.6)

Therefore Z0 is a conformal symmetry for π1 , π3, and H2. According to a theorem
of Oevel [14] we end up with the following deformation relations:

[Zi, Xj ] = (1 + 2j)Xi+j , [Zi, Zj ] = 2 (j − i)Zi+j , LZi (π2j+1)

= (2j − 2i− 1) π2(i+j)+1 (4.7)

where X1 = π3dH2 = π1dH4 and Xi = Ri−1X1. We also have

Zi (H2j) = 2 (i + j)H2(i+j) . (4.8)

We will not present the results for the BV Cn+1 system. In fact the BV Cn+1 system
is equivalent to the BV Bn+1 system through the transformation

u1 7−→ −un , u2 7−→ −un−1 , . . . , un−1 7−→ −u2 , un 7−→ −u1 . (4.9)

5. The BV Dn+1 system and its Poisson bracket.

We recall the BV Dn+1 system (ui > 0) .

u̇1 = u1 (u1 + 2u2) , u̇2 = u2 (2u3 − u1) ,

u̇i = 2ui(ui+1 − ui−1) i = 3, . . . , n− 3

u̇n−2 = un−2(un + un−1 − 2un−3), u̇n−1 = un−1(un − un−1 − 2un−2),

u̇n = −un(un − un−1 + 2un−2) . (5.1)

We make a linear transformation

v1 = u1 , vi = 2ui i = 2, . . . , n− 2 , vn−1 = un−1 , vn = un , (5.2)
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to obtain the equivalent system

v̇1 = v1 (v1 + v2) , v̇i = vi(vi+1 − vi−1) i = 2, . . . n− 3 (5.3)

v̇n−2 = vn−2(vn + vn−1 − vn−3), v̇n−1 = vn−1(vn − vn−1 − vn−2),

v̇n = −vn(vn − vn−1 + vn−2) .

We consider again the 2× 2 matrices which were defined in (3.4) and we also set

X =
( √

vn i
√

vn

−√vn−1 i
√

vn−1

)
, Y =

1
2

( √
vn−2vn

√
vn−2vn

−√vn−2vn−1
√

vn−2vn−1

)
, (5.4)

W =
i

2

(
0 vn−1 − vn

vn − vn−1 0

)
.

Equations (5.3) can be written in a Lax Pair form L̇ = [L,B], where

L =




0 0 · · · 0
√

v1 i
√

v1

0 O X O · · · O
... Xt O Xn−2

. . .
...

0 O Xn−2
. . . . . . O

√
v1

...
. . . . . . O X2

i
√

v1 O · · · O X2 O




, (5.5)

B =




0 · · · · · · 0 − 1
2

√
v1v2 − 1

2

√
v1v2 0 0

... O O Y O · · · · · · O

... O W O Yn−3
. . .

...

0 −Y t O O
. . . . . . O

...
1
2

√
v1v2 O −Yn−3

. . . . . . O Y3 O

1
2

√
v1v2

...
. . . . . . O O O Y2

0
... O −Y3 O O O

0 O · · · · · · O −Y2 O Y0




.

The invariant polynomials of this system are given by the functions

H2,H4, . . . , Hn−1 when n is odd ,

H2,H4, . . . , Hn−2,Hn−1 when n is even ,
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where Hk = 1
kTr(L2k) .

As in the case of the BV Bn+1 system we use the variables bj , 1 ≤ j ≤ n + 1 of
the equations (2.4) in order to find a cubic bracket π3 of the BV Dn+1 system. The
dynamical system (2.4) in the case of the Lie algebra of type Dn+1 can be written in
Hamiltonian form ḃj = {bj ,H}, with Hamiltonian

H = log b1 + 2
n−1∑

j=2

log bj + log bn + log bn+1 , (5.6)

and Poisson bracket

{bj , bj+1} = −{bj+1, bj} = 1 , for j = 1, 2, . . . , n− 1 (5.7)

{bn−1, bn+1} = −{bn+1, bn−1} = 1;

all other brackets are zero. In the new variables vj (v1 = b−1
1 b−1

2 , vk = 2b−1
k b−1

k+1,
k = 2, . . . , n − 2, vn−1 = b−1

n−1b
−1
n , vn = b−1

n−1b
−1
n+1 ) the above skew-symmetric

bracket, which we denote by π3, is given by

{v1, v2} = v1v2 (2v1 + v2) (5.8)

{vi, vi+1} = vivi+1 (vi + vi+1) , i = 2, . . . , n− 3

{vn−2, vn−1} = vn−2vn−1 (2vn−1 + vn−2)

{vn−1, vn} = 2vn−1vn (vn − vn−1)

{vi, vi+2} = vivi+1vi+2 , i = 1, . . . , n− 3

{vn−2, vn} = vn−2vn (vn−2 + 2vn)

{vn−3, vn} = vn−3vn−2vn .

All other brackets are zero. As in the case of KM system we suppose that n is odd
(n = 2l + 1) and we look again for a bracket π1 which satisfies π3∇H2 = π1∇H4.

We define

τij = −τji = v2i−1

j−1∏

k=i

v2k+1

v2k
for i < j , τii = v2i−1 , (5.9)

and we let π1 be the bracket which is defined as follows:

{vi, vj} = (−1)i+j−1
τ[ i

2 ]+1,[ j+1
2 ] for 1 ≤ i < j ≤ n− 2 , (5.10)

{vi, vn−1} = {vi, vn} =
(−1)i+n

2
τ[ i

2 ]+1,[n
2 ] for i = 1, . . . , n− 2 ,

{vn−1, vn} = −{vn, vn−1} =
1
2

(vn − vn−1) .

We obtain the following Theorem:
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Theorem 5.3 (i) π1 , π3 are Poisson.
(ii) The function

1
4
H2 =

1
8
Tr(L4) = vn−2vn + 2vn−1vn +

n−2∑

i=1

vivi+1 +
1
2

n−2∑

i=2

v2
i ,

is the Hamiltonian of the BV Dn+1 system with respect to the bracket π1.

(iii) The function

hn = (vn − vn−1)
n−2∏

i=1

vi ,

is the Casimir of the BV Dn+1 system in the bracket π1.

(iv) π1 , π3 are compatible.

Proof. (i) We denote {}d the bracket π1 of BV Dn+1 system and {}b the Poisson
bracket π1 of BV Bn system (n = 2l + 1) . Then {}d can be defined as follows:

{vi, vj}d = {vi, vj}b , 1 ≤ i, j ≤ n− 2

{vi, vn−1}d = {vi, vn}d =
1
2
{vi, vn−1}b , 1 ≤ i ≤ n− 2

{vn−1, vn}d =
1
2

(vn − vn−1) .

We set
[vi, vj , vk] = {vi, {vj , vk}}+ {vj , {vk, vi}}+ {vk, {vi, vj}}

For i, j, k = 1, 2, . . . , n− 2

[vi, vj , vk]d = [vi, vj , vk]b = 0 .

For i, j = 1, 2, . . . , n− 2

[vi, vj , vn−1]d = [vi, vj , vn]d =
1
2
[vi, vj , vn−1]b = 0 .

For i = 1, 2, . . . , n− 2

[vi, vn−1, vn]d = {vi, {vn−1, vn}d}d + {vn−1, {vn, vi}d}d + {vn, {vi, vn−1}d}d

=
1
2
{vi, vn − vn−1}d +

1
2
{vn−1, {vn−1, vi}b}d +

1
2
{vn, {vi, vn−1}b}d

=
1
2
{vi, vn−1 − vn−1}b − 1

4
{vn−1, {vi, vn−1}b}b +

1
4
{vn−1, {vi, vn−1}b}b

= 0 .
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Therefore, {}d is Poisson. Relation (5.7) implies that π3 is Poisson as well.

(ii) , (iii) follow from simple calculations.

(iv) The proof that the bracket π1 + π3 is Poisson is similar to the above proof that
the {}d is Poisson.

Remark: Since the functions H2,H4, . . . , Hn−2, hn are independent and in involution
(when n is even, n = 2l) the BV D2l+1 system is integrable using the bracket π3 and
since the functions H2,H4, . . . , Hn−1, hn are independent and in involution (when n

is odd, n = 2l − 1) the BV D2l system is integrable using the brackets π1 and π3 .
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