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Abstract
A summary of the classical Lie method is presented as it applies to Richard’s

equation for water flow in an unsaturated uniform soil. In addition the more
general potential symmetries for Richard’s equations presented as a system are
also given. These results are extended to give a new non-classical symmetry
analysis based upon the method of Bluman and Cole. An example of a non-
classical symmetry reduction of Richard’s equation is presented. Furthermore a
new class of potential symmetries is derived.
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1. Introduction

The symmetry analysis presented here is motivated by problems associated with water
flow in unsaturated soils as described by for example Philip [1]. It is normal to
describe such flow by means of Richard’s equation [2] which is considered here in the
one dimensional form:

∆ (x, t, u,ut,ux,uxx) ≡ ut − (Dux)x −Kuux = 0 (1)

and where the soil will be taken to be homogeneous so that both the diffusivity D

and hydraulic conductivity K are functions of u alone. In addition a suffix indicates
a partial derivative.

The use of symmetry or similarity methods to describe flow in unsaturated soil is
not new and has found practical application in the theory of infiltration. For example,
in the case of horizontal absorption Philip [3] describes travelling wave solutions based
upon an ansatz using the Boltzmann similarity variable ω:

u = u (ω) ω = xt−
1
2 (2)

although the resulting mathematical forms for the diffusivity are not well adapted for
fitting empirical data.
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In a second example, with application to horizontal flow, with Neuman boundary
conditions the infiltration process is described using the ansatz:

u (x, t) = ψ (ω) t
1

n+2 ω = xt−
n+1
n+2 D (u) = cun (3)

Similarity solutions of Richard’s equation have been described by Sposito [4], Ed-
wards [5] and El-labany et al [6] who have conducted a comprehensive classical Lie
analysis of this equation and Sophocleous [7] has presented a partial classical analysis
of the equation in its potential form. In addition, Gandarias [8] presents potential
symmetries for a form of heterogeneous porous media with power law diffusivity and
hydraulic conductivity. There is however no detailed analysis of the important non-
classical approach of Bluman and Cole [9] applied to equation (1) although Gandarias
et al [10] has presented a non-classical analysis of the equation in a restricted form.
It is the aim here to summarize the main classical symmetries of Richard’s equation,
excluding obvious cases, for example translation symmetries and furthermore to intro-
duce new symmetries by undertaking both a non-classical and a potential symmetry
analysis.

2. Classical results for Richard’s equation

In the classical Lie group method one-parameter infinitesimal point transformations,with
group parameter ε are applied to the dependent and independent variables (x, t, u)
In this case the transformation are

x̄ = x + εη1 (x, t, u) + O
(
ξ2

)
t̄ = t + εη2 (x, t, u) + O

(
ξ2

)
(4)

ū = u + εφ (x, t, u) + O
(
ξ2

)

and the Lie method requires invariance of the solution set Σ ≡ {u (x, t) , ∆ = 0}.
This results in a system of overdetermined, linear equations for the infinitesimals η1,
η2, φ. The corresponding Lie algebra of symmetries is the set of vector fields

X = η1 (x, t, u)
∂

∂x
+ η2 (x, t, u)

∂

∂t
+ φ (x, t, u)

∂

∂u
(5)

The condition for invariance of (1) is the equation:

X (2)
E (∆) |∆=0 = 0 (6)

where the second prolongation operator X (2)
E is written in the form

X (2)
E = X + φ[t] ∂

∂ut
+ φ[x] ∂

∂ux
+ φ[xx] ∂

∂uxx
(7)

and where φ[t], φ[x] and φ[xx] are defined through the transformations of the partial
derivatives of u. In particular:

ūx̄ = ux + +εφ[x] (x, t, u) + O
(
ξ2

)
ūt̄ = ut + +εφ[t] (x, t, u) + O

(
ξ2

)

ūx̄x̄ = uxx + +εφ[xx] (x, t, u) + O
(
ξ2

)
(8)
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Once the infinitesimals are determined the symmetry variables may be found from
condition for invariance of surface u=u (x, t):

Ω=φ−η1ux − η2ut = 0 (9)

Throughout the following it has been found convenient to set

D = Hu (10)

and also, the MACSYMA program symmgrp.max due to Champagne et. al. [11] has
been used to calculate the determining equations.

In the case Richard’s equation (1) the nine well known, for example, Sposito [4],
Edwards [5], over-determined linear determining equations are :

η2u
= 0 η2x

= 0 (11)

η1uHu u − η1u uHu = 0 η2uHu u + η2u uHu = 0 (12)

η2xHu u + η2u xHu + η1u = 0 φxKu + φxxHu − φt = 0 (13)

η2x
HuKu − φHu u+η2xx

H2
u − η2t

Hu + 2η1x
Hu = 0 (14)

2η1u HuKu + φHuHu u u − φH2
u u + φuHuHu u + φu uH2

u − 2η1uxH2
u = 0 (15)

φHuKuu − φHuuKu + η1xHuKu+2φxHuHuu + 2φuxH2
u − η1xxH2

u + η1tHu = 0
(16)

As may be seen from Table 1 the classical symmetries are given for power and
exponential functions of H and K in which the infinesimal η1 and η2 are linear func-
tions of x and t and where φ is linear in u. Note that each of these symmetries has
been used by Edwards [5] to reduce Richard’s equation to an ordinary differential
equation.

Functions H and K Symmetries

H=cuλ

K=kuµ

η1=(λ−µ)x, φ=u

η2=(λ−2µ+1)t

H=cuλ

K=k ln u

η1=λx,φ=u

η2=(λ+1)t

H=cuλ

K=k(u ln u−u)

η1=(λ−1)x−kt

η2=(λ−1)t, φ=u

H=ceλu

K=keµu

η1=(λ−µ)x

η2=(λ−2µ)t, φ=1

H=ceλu, K=ku2 η1=λx−2kt, η2=λt, φ=1

H=cu, K=ku2 η1=−x, η2=−2t, φ=u

H=cu

K=ku2

η1=−2kxt, η2=−2kt2

φ=x+2kut

H=cu, K=ku2 η1=−2kt, η2=0, φ=1

Table 1. Classical symmetries of Richard’s equation
(based on the comprehensive analysis of Sposito [4], Edwards [5],

and excluding obvious cases such as translation symmetries)
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3. Non-classical point symmetry

The non-classical method is a generalisation of the classical Lie group approach due
to Bluman & Cole [9] that incorporates the invariant surface condition (9) into the
condition (6) for form invariance of Richard’s equation (1). It follows that non-
classical symmetries of Richard’s equation may be found by solving the non-linear set
of determining equations:

X (2)
E (∆) |∆=0, Ω=0 = 0 (17)

To apply (17) two cases must be considered as follows.

3.1. Case A η2 = 1 η1 ≡ η (x, t, u)

It is straight forward to show that there are four non-linear determining equations as
follows:

Hu (ηuHu u − ηu uHu) = 0 (18)

φxHuKu + φ2Hu u + φxxH2
u − φtHu − 2ηxφHu = 0 (19)

2ηuHuKu + φHuHu u u − φH2
u u + φuHuHu u + φu uH2

u

− 2ηuxH2
u + 2ηηuHu

= 0 (20)

φHuKu u − φHu uKu + ηxHuKu + 2φxHuHu u − ηφHu u (21)

+ 2φuxH2
u − ηxxH2

u − 2ηuφHu + ηtHu + 2ηηxHu

= 0

Solutions of these equations will be generated below.

3.2. Case B η2 = 0 η1 ≡ η ≡ 1

In this case the four determining equations are:

φHu u = 0 (22)

φxKu + φxxHu − φt = 0 (23)

φHuHu u u − φH2
u u + φuHuHu u + φu uH2

u = 0 (24)

φHuKu u − φHu uKu + 2φxHuHu u + 2φuxH2
u = 0 (25)

There is only one solution of these equations as follows, namely the infinite symmetry

η = 1 H = cu K = ku φ =
∂u

∂x
= c0u + g (26)

where g = g (x, t) and satisfies

cgxx + kgx − gt = 0 (27)
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4. Examples of symmetries for Case A

Using (18) and (20) the following explicit forms for η (x, t, u) and φ (x, t, u) may be
obtained:

η (x, t, u) = f (x, t)H (u) + g (x, t) (28)

φ (x, t, u) = H−1
u

{
fxH2 − 2fZ (u) + 2fgX (u)

+2f2W (u) + HS (x, t) + R (x, t)
}

(29)

where f , g, R, S depend on x, t and W , X and Z depend only on u. Examples
of explicit non-classical symmetries may now be found by considering two sub-cases
f = 0 and f 6= 0 separately.

4.1. Sub-case f = 0

When f = 0 equations (28) and (29) become:

η = g φ = H−1
u {HS (x, t) + R (x, t)} (30)

and the determining equations (19) and (21) are now

(H Hu uKu −HHuKu u + g Hu u) (R + HS)

+ H3
u (gxx − 2 Sx)−H2

u (gxKu + gt + 2 g gx)

= 0 (31)

and

H3
u (Rxx + HSxx) + Hu u (R + HS)2 + H2

uKu (Rx + H Sx)

− 2 gx H2
u (R + H S)−H2

u (Rt + H St)

= 0 (32)

The following three solutions of these equations have found. In the first case:

f = 0 H =
c

u
K =

k

u
(33)

where c and k are constants and where the infinitesimals are

η = c2e
− kx

c φ =
c2ku

c
e−

kx
c (34)

To generate a similarity solution of Richard’s equation these infinitesimals may be
substituted into the surface invariant condition (9) and the method of characteristics
employed to determine the following ansatz for u (x, t):

u (x, t) = ψ (ω) e
kx
c (35)
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The similarity variable ω (x, t) is given by:

e
kω
c = e

kx
c − kc2t

c
(36)

Substitution of these relationships into Richard’s equation (1) gives the ordinary
differential equation:

4cψωω

ψ2
− 8cψ2

ω

ψ3
− 2kψω

ψ2
− c2e

kω
c ψω = 0 (37)

Clearly the equations (36) and (37) together define ψ (ω) and ω (x, t) to give the
final form of the solution (35).

For the second symmetry the following solutions of (31) and (32) have also been
found:

f = 0 H = arbitrary K = arbitrary (38)

with infinitesimals:

η = η (t) φ = 0 (39)

and in a third case solutions of (31) and (32) may be obtained when:

f = 0 H = cu K = ku (40)

This gives rise to the infinitesimals:

η =
x− kt + c2

2t + c0
φ =

c4 + c1u + c6e
c3(cc3t−kt−x)

2t + c0
(41)

The similarity solutions corresponding to the second and third symmetry follows
as for the first symmetry. However the details will not be presented here.

4.2. The sub-case f 6= 0

For this sub-case substitution of (28) and (29) into the determining equation (20)
gives rise to the following condition for f and g :

a0 − ga2 − fa4 = 0 (42)

where ai are constants for which the functions Z, X and W satisfy:

Zu

Hu
−K = a0u + a1

Xu

Hu
+ u = a2u + a3 (43)

Wu

Hu
+

∫
Hdu = a4u + a5 (44)
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The remaining two determining equations (19) and (21) have the lengthy form:

fx

(
4H2

uZu −H2HuKu u + H2 KuHu u −H H2
uKu

)

+ 2f Z (HuKu u −KuHu u )

+ 2f2
(−H Hu uZ − 2 H2

uZ −HuKu u W + KuHu u W
)

+ 2f g (−Hu uZ −HuKu u X + KuHu uX)

+ fx g
(−4H2

uXu + H2 Hu u − 2H H2
u

)
+ 2f gx

(−2H2
uXu −HH2

u

)

+ 2f2 g
(
H Hu uX + 2 H2

u X + Hu u W
)

+ 2f g2Hu uX

+ ffx

(
H3Hu u − 8H2

uWu

)
+ 2f3W

(
HHu u + 2H2

u

)− 2H3
uSx

+ (KuHu u −HuKu u) (R + HS) + f
(
HHu u + 2H2

u

)
(R + HS)

+ g Hu u (R + HS)− gxH2
uKu − 3 fxxH H3

u + gxx H3
u

− ft H H2
u − gt H2

u − 2ggx H2
u

= 0 (45)

4 f2 Hu u Z2 + f fx

(−4 H2 Hu uZ + 4 H H2
uZ + 4 H2

uKuW
)

+ fxx

(
H2H2

u Ku − 2H3
u Z

)
+ f gx

(
4H2

u Z + 2H2
u Ku X

)

− 8 f2 g Hu u X Z − 8 f3 Hu u W Z − 4 f Hu u Z (R + HS)

− 2 fxH2
u Ku Z + 2 ftH

2
u Z + 4 f2 g2Hu u X2

+ f fx g
(
4 H2 Hu u X − 4 H H2

u X
)

+ fxgx

(
4 H3

uX − 2 H2 H2
u

)

+ 8 f3 g Hu uW X + 4 f gHu u X (R + HS) + 2fx gH2
uKu X + 2 f gxxH3

uX

+ 2 fxxg H3
u X − 2 f gt H2

u X − 4 f g gx H2
u X − 2 ft g H2

uX + 4 f4 Hu u W 2

+ f2 fx

(
4 H2 Hu u W − 4 H H2

u W
)

+ f2
x

(
4 H3

uW + H4 Hu u − 2 H3 H2
u

)

+ 4 f2Hu uW (R + HS) + 4 f fxx H3
uW − 4 f2 gxH2

uW

− 4 f ft H2
u W −H2

u (Rt + HSt) + H3
u (Rxx + HSxx) + H2

u Ku (Rx + HSx)

+ Hu u (R + HS)2 + fx

(
2 H2 Hu u − 2 H H2

u

)
(R + HS)

− 2gxH2
u (R + HS) + fxxx H2 H3

u − fxt H2 H2
u

= 0 (46)

The following three symmetry solutions have been found have been found from
these equations. In the first sub-case:

f = c0 Ku = −c0H (47)

where c0 is constant and the corresponding infinitesimals are:

η = c0H φ = 0 (48)
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Secondly the sub-case

f =
k

c
H = cu K = ku2 (49)

gives rise to the infinitesimals:

η = k (u + h) φ = −k2u2 (u + h)
c

(50)

where h = h (x, t) such that
ht = chxx + 2khhx (51)

and finally the sub-case:

f = − c1λ

c0 + c1x + c2t
H = ceλu K = keλu (52)

yields:

η = − cc1λeλu

c0 + c1x + c2t
φ =

kc1λeλu − c2

λ (c0 + c1x + c2t)
(53)

The corresponding similarity solutions for these sub-cases giving the solutions of
Richard’s equations will be considered elsewhere.

Functions H and K
Symmetries

φ = ηux+ut

H= c
u

K= k
u

η=c2e−
kx
c

φ=
c2ku

c e−
kx
c

H, K arbitrary
η=η(t)

φ=0

H=H(u)

Ku=−c0H

η=c0H

φ=0

H=cu

K=ku2

η=k(u+h)

φ=− k2u2(u+h)
c

ht=chxx+2khhx

H=ceλu

K=keλu

η=− cc1λeλu

c0+c1x+c2t

φ=
kc1λeλu−c2

λ(c0+c1x+c2t)

Table 2: Examples of non-classical symmetries of Richard’s equation

5. Potential symmetries

Richard’s equation may also be written as the potential system ∆ ≡ (∆1, ∆2) = 0
where:

∆1 = vx − u = 0 ∆2 = vt −Huux −K = 0 (54)
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and this form gives rise to many new important symmetries. In this case the classical
Lie analysis is based upon the infinitesimal transformations of the four variables:

x̄ = x + εη1 (x, t, u, v) + O
(
ξ2

)
t̄ = t + εη2 (x, t, u, v) + O

(
ξ2

)

ū = u + εφ1 (x, t, u, v) + O
(
ξ2

)
v̄ = v + εφ2 (x, t, u, v) + O

(
ξ2

)
(55)

Note that since u = vx these define contact transformations for v. The associated
generator:

X = η1
∂

∂x
+ η2

∂

∂t
+ φ1

∂

∂u
+ φ2

∂

∂v
(56)

and the condition for form invariance of (54) is found by applying the first prolongation
so that now

X (1)
E (∆) |∆1=0,∆2=0 = 0 (57)

It may be shown that the seven linear determining equations are:

η2u = 0 η2vHu − η1u = 0 (58)

uη2v + η2x = 0 φ2u − uη1u = 0 (59)

2η1uK + φ1Hu u − φ2vHu + φ1uHu + η2tHu − η1xHu = 0 (60)

φ2uK − uη1uK − uφ2vHu − φ2xHu + φHu + u2η1vHu + uη1xHu

= 0 (61)

φ1HuKu − η1uK2 − φ1Hu uK − φ1HuK + uη1vHuK

+ η1xHuK + uφ1vH2
u + φ1xH2

u − φ2tHu + uη1tHu

= 0 (62)

There are two main cases. to be considerd. In the first η1v 6= 0 whilst in the
second, (considered in detail by Sophocleous [7]) η1v

= 0.

5.1. The case η1v 6= 0

The determining equations have the following new symmetry solution:

H = c

(
u

c0 + uc1

) 1
c0
−1

K = ku

(
u

c0 + uc1

) 1
c0
−1

when c0 6= 0, 1 (63)

H = ce−
1

c1u K = kue−
1

c1u when c0 = 0 (64)

H = c ln
(

u

1 + c1u

)
K = ku when c0 = 1 (65)
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with infinitesimals

η1 = c0x + c1v η2 = c3 + t

φ1 = −u (c0 + c1u) φ2 = 0 (66)

A detailed discussion of the corresponding similarity solutions of Richard’s equa-
tion is the subject of on going research.

5.1. The case η1v
= 0

In this case it follows that η2 = η2 (t) and the corresponding results have been analysed
by Sophocleous [7]. Table 3 is based upon his comprehensive work in which all the
known symmetries for this case are presented excluding the obvious translational
symmetries.

Functions H and K Symmetries
H=cu

K=ku
µ
+k0u

η1=(1−µ)(x−k0t), φ1=u

η2=2(1−µ)t, φ2=(2−µ)v

H=cu

K=ke
λu

+k0u

η1=µ(k0t−x), η2=−2µt

φ1=1, φ2=−µv+x+k0t

H=cu

K=k ln u+k0u

η1=−kt, η2=2t

φ1=u, φ2=2v+kt

H=cu

K=ku ln u+k0u

η1=x−k0t, η2=0

φ1=u, φ2=v

H=cu

K=ku
2

η1=−2kt, η2=0

φ1=1, φ2=x

H=cu

K=ku
2

η1=−2kxt, η2=−2kt
2

φ1=x+2kut, φ2=ct+ t2
2

H=ce
λu

K=ku
2

η1=λx−2kt, η2=λt

φ1=1, φ2=x+λv

H=ce
λu

K=ke
µu

+k0u

η1=(λ−µ)x−k0µt, η2=(λ−2µ)t

φ1=1, φ2=x+k0t+(λ−µ)v

H=cu
λ

K=ku
µ
+k0u

η1=(λ−µ)x+k0(µ−1)t, φ1=u

η2=(λ−2µ+1)t, φ2=(λ−µ+1)v

H=cu
λ

K=ku

η1 = (λ−1)
2 (x+kt), η2=0

φ1=u, φ2=
(λ+1)

2 v

H=cu
λ

K=ku ln(u)+k0u

η1=(λ−1)x−kt, φ1=u

η2=(λ−1)t, φ2=λv

H=cu
λ

K=k ln(u)+k0u

η1=λx−k0t, φ1=u

η2=(λ+1)t, φ2=(λ+1)v+kt

Table 3 Potential symmetries of Richard’s equation
(based upon the comprehenvive analysis of the case

η2 = η2 (t) by Sophocleous [7])
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