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Abstract

The aim of this paper is to study the existence, uniqueness and other prop-
erties of solutions of a certain Volterra integrodifferential equation involving
iterated integrals. The main tools employed in the analysis are based on the
variation of constants formula, application of the Leray-Schauder alternative
and a certain integral inequality which provides explicit bound on the unknown
function.
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1. Introduction

Consider the nonlinear iterated Volterra integrodifferential system of the form

x′ (t) = A (t)x (t) + f (t, x (t) , K (t, x)) , x (0) = x0, (1.1)

as a perturbation of the linear system

y′ (t) = A (t) y (t) , y (0) = x0, (1.2)

for 0 ≤ t < ∞, where A is a n× n matrix,

K (t, x) =

t∫

0

g (t, σ, x (σ) , L (t, σ, x)) dσ, (1.3)

in which

L (t, σ, x) =

σ∫

0

h (t, σ, τ, x (τ))dτ, (1.4)
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and x, y, f, g, h are real n-dimensional vectors. Let Rn denotes the real n-dimensional
Euclidean space of column vectors. The symbol |.| will denote the norm in Rn or n×n

matrix norm depending on whether is applied to vector or matrix. Let J = [0, T ]
( T > 0 is a constant), R+ = [0,∞) be the given subsets of R, the set of real
numbers and C (S1, S2) denotes the class of continuous functions from the set S1

to the set S2 . For 0 ≤ τ ≤ σ ≤ t < ∞, we assume that h ∈ C
(
R3

+ ×Rn, Rn
)
,

g ∈ C
(
R2

+ ×Rn ×Rn, Rn
)
, f ∈ C (R+ ×Rn ×Rn, Rn) and A (t) is a continuous

n× n matrix on R+

Many papers have been devoted to the study of behavioral relationships between
the solutions of the special versions of equation (1.1) and the solutions of equation
(1.2) by using different techniques. The equation considered in (1.1) is in the general
sprit of the investigations of Constantin [1], Éshmatov [3], Loginov [5], Pachpatte [7],
Talpalaru [10] (see also [4]) and others. The purpose of this paper is to study the
existence, uniqueness and other properties of the solutions of equation (1.1) treated
as a perturbation of equation (1.2) under some suitable assumptions on the functions
involved therein. The variation of constants formula, a simple and classical applica-
tion of the Leray-Schauder alternative and a certain integral inequality with explicit
estimate are used to establish the results.

2. Global existence

Before giving the main result concerning the global existence of solutions of equation
(1.1), we note that, our approach and arguments led us to make use of the variation
of constants formula, namely, any solution x(t) of equation (1.1) considered as a
perturbation of equation (1.2) can be represented by the equivalent integral equation

x (t) = Y (t) Y −1 (0)x0 +

t∫

0

Y (t)Y −1 (s) f (s, x (s) ,K (s, x)) ds, (2.1)

where Y (t) is the fundamental solution matrix of equation (1.2) such that Y (0) = I,
the identity matrix.

We shall use the following form of the topological transversality theorem given by
Granas in [2, p. 61] which is also known as Leray-Schauder alternative. For an
excellent account on the applications of the topological transversality method, see the
survay paper by Ntyouyas [6].

Lemma 1. Let B be a convex subset of a normed linear space E and assume 0 ∈ B.

Let S : B → B be a completely continuous operator and let U (S) = {x ∈ B : x = λSx}
for some 0 < λ < 1. Then either U (S) is unbounded or S has a fixed point.
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We are now ready to state and prove the following theorem which deals with the
global existence of solutions of equation (1.1).

Theorem 1. Let Y (t) be the fundamental solution matrix of equation (1.2) such that
∣∣Y (t) Y −1 (s)

∣∣ ≤ M, (2.2)

for 0 ≤ s ≤ t ≤ T, where M is a positive constant and let c = M |x0| . Suppose that
the functions f, g, h in equation (1.1) satisfy the conditions

|f (t, x (t) ,K (t, x))| ≤ p (t)w1 (|x (t)|) + |K (t, x)| , (2.3)

|g (t, σ, x (σ) , L (t, σ, x))| ≤ q (t, σ) w2 (|x (σ)|) + |L (t, σ, x)| , (2.4)

|h (t, σ, τ, x (τ))| ≤ r (t, σ, τ)w3 (|x (τ)|) , (2.5)

where p (t) ∈ C (R+, R+) and for 0 ≤ τ ≤ σ ≤ ∞, q (t, σ) ∈ C
(
R2

+, R+

)
, r (t, σ, τ) ∈

C
(
R3

+, R+

)
and for i = 1, 2, 3 , wi : R+ → (0,∞) are continuous and nondecreasing

functions. Let w (u) = max {w1 (u) , w2 (u) , w3 (u)} . Then the equation (1.1) has a
solution defined on J provided T satisfies

M

T∫

0

D (s) ds <

∞∫

0

ds

w (s)
, (2.6)

where

D (t) = p (t) +

t∫

0



q (t, σ) +

σ∫

0

r (t, σ, τ) dτ



dσ. (2.7)

Proof. First we establish the priori bounds for the solutions of the problem

x′ (t) = A (t)x (t) + λf (t, x (t) ,K (t, x)) , x (0) = x0, (2.8)

for t ∈ J and λ ∈ (0, 1) . If x(t) is a solution of equation (2.8), then it satisfies the
equivalent integral equation

x (t) = y (t) + λ

t∫

0

Y (t)Y −1 (s) f (s, x (s) ,K (s, x)) ds, (2.9)

where y (t) = Y (t)Y −1 (0) x0 is a solution of equation (1.2). From (2.9) and using
the hypotheses (2.2)-(2.5) we have

|x (t)| ≤ |y (t)|+
t∫

0

∣∣Y (t)Y −1 (s)
∣∣ |f (s, x (s) , K (s, x))| ds
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≤ c + M

t∫

0


p (s) w1 (|x (s)|) +

s∫

0

{
q (s, σ) w2 (|x (σ)|)

+

σ∫

0

r (s, σ, τ)w3 (|x (τ)|) dτ



 dσ


 ds. (2.10)

Define a function u(t) by the right hand side of (2.10), then |x (t)| ≤ u (t) , u (0) = c

and

u′ (t) = M


p (t) w1 (|x (t)|) +

t∫

0

{
q (s, σ)w2 (|x (σ)|)

+

σ∫

0

r (s, σ, τ)w3 (|x (τ)|) dτ



 dσ




≤ M


p (t)w1 (u (t)) +

t∫

0

{
q (s, σ) w2 (u (σ))

+

σ∫

0

r (s, σ, τ)w3 (u (τ)) dτ



 dσ




≤ MD (t) w (u (t)) ,

i.e.
u′ (t)

w (u (t))
≤ MD (t) . (2.11)

Integration of (2.11) from 0 to t ∈ J and the use of the change of variable and the
condition (2.6) gives

u(t)∫

c

ds

w (s)
≤ M

t∫

0

D (s) ds ≤ M

T∫

0

D (s) ds <

∞∫

c

ds

w (s)
. (2.12)

From (2.12) we conclude that there is a constant Q independent of λ ∈ (0, 1) such

that u (t) ≤ Q for t ∈ J and consequently ‖x‖ =
sup

t ∈ J
|x (t)| ≤ Q.

We define B = C (J,Rn) be the Banach space of all continuous functions endowed
with sup-norm as above and rewrite the initial value problem (1.1) as follows. If z ∈ B

and x(t) = y(t) + z(t), then it is easy to see that z(t) satisfies

z (0) = z0 = 0,
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z (t) =

t∫

0

Y (t)Y −1 (s) f (s, y (s) + z (s) ,K (s, y + z)) ds,

if and only if x(t) satisfies equation (1.1). Define S : B0 → B0, B0 = {z ∈ B : z0 = 0}
by

Sz (t) =

t∫

0

Y (t)Y −1 (s) f (s, y (s) + z (s) ,K (s, y + z)) ds, (2.13)

for t ∈ J . Clearly S is continuous. Next, we prove that S is completely continuous.
Let {am} be a bounded sequence in B0, i.e. ‖am‖ ≤ d for all m, where d is a positive

constant. From (2.13), using the hypotheses and letting D̄ = sup
t ∈ J

{D (t)} we have

|Sam (t)| ≤
t∫

0

M

[
p (s)w1 (c + |am (s)|)

+

s∫

0

{
q (s, σ)w2 (c + |am (σ)|)

+

σ∫

0

r (s, σ, τ)w3 (c + |am (τ)|) dτ



 dσ


 ds

≤
t∫

0

M


 p (s)w1 (c + d) +

s∫

0

{
q (s, σ)w2 (c + d)

+

σ∫

0

r (s, σ, τ)w3 (c + d) dτ



 dσ


 ds

≤ Mw (c + d)

t∫

0

D (s) ds

≤ Mw (c + d)

T∫

0

D (s) ds

≤ Mw (c + d) D̄T.

Consequently, we have
‖Sam‖ ≤ Mw (c + d) D̄T.

This means that{Sam} is uniformly bounded.
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Now, we shall show that {Sam} is equicontinuous. Let 0 ≤ t1 ≤ t2 ≤ T. Then from

(2.13), using the hypotheses and letting D̄ =
sup

t ∈ J
{D (t)} we have

|Sam (t2)− Sam (t1)|

=

∣∣∣∣∣∣

t2∫

t1

Y (t2)Y −1 (s) f (s, y (s) + am (s) ,K (s, y + am)) ds

+

t1∫

0

[Y (t2)− Y (t1)] Y −1 (s) f (s, y (s) + am (s) , K (s, y + am)) ds

∣∣∣∣∣∣

≤
t2∫

t1

∣∣Y (t2)Y −1 (s)
∣∣ |f (s, y (s) + am (s) ,K (s, y + am))| ds

+

t1∫

0

|Y (t2)− Y (t1)|
∣∣Y −1 (s)

∣∣ |f (s, y (s) + am (s) ,K (s, y + am))| ds

≤
t2∫

t1

M

[
p (s) w1 (|y (s)|+ |am (s)|)

+

s∫

0

{
q (s, σ)w2 (|y (σ)|+ |am (σ)|)

+

σ∫

0

r (s, σ, τ)w3 (|y (τ)|+ |am (τ)|) dτ



 dσ


 ds

+

t1∫

0

|Y (t2)− Y (t1)|M
[

p (s)w1 (|y (s)|+ |am (s)|)

+

s∫

0

{
q (s, σ)w2 (|y (σ)|+ |am (σ)|)

+

σ∫

0

r (s, σ, τ)w3 (|y (τ)|+ |am (τ)|) dτ



 dσ


 ds

≤
t2∫

t1

M

[
p (s)w1 (c + d) +

s∫

0

{
q (s, σ) w2 (c + d)
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+

σ∫

0

r (s, σ, τ)w3 (c + d) dτ



 dσ


 ds

+

T∫

0

|Y (t2)− Y (t1)|M
[

p (s)w1 (c + d) +

s∫

0

{
q (s, σ)w2 (c + d)

+

σ∫

0

r (s, σ, τ)w3 (c + d) dτ



 dσ


 ds

≤
t2∫

t1

Mw (c + d)D (s) ds +

T∫

0

Mw (c + d)D (s) |Y (t2)− Y (t1)| ds

≤
t2∫

t1

Mw (c + d) D̄ds +

T∫

0

Mw (c + d) D̄ |Y (t2)− Y (t1)| ds (2.14)

From (2.14) and by virtue of the continuity of Y (t) , t ∈ J , we conclude that {Sam}
is equicontinuous and hence by Arzela-Ascoli theorem the operator S is completely
continuous.

Moreover, the set U (S) = {z ∈ B0 : z = λSz; λ ∈ (0, 1)} is bounded, since for every
z in U(S) the function x(t) = y(t) + z(t) is a solution of (2.9), for which we have
proved that ‖x‖ ≤ Q and hence ‖z‖ ≤ Q + c. Now an application of Lemma 1, the
operator S has a fixed point in B0 . This means that the problem (2.8) has a solution
x(t) on J . The proof is complete.

Remark 1. If we take MD(t) = 1 in (2.6) and the right hand side in (2.6) is assumed
to diverse, then the solution of equation (1.1) exists for every T < ∞, that is on the
entire interval R+.

3. Behavior of solutions

In this section we study the behavior of solutions of equation (1.1) under some suitable
conditions on the functions involved in equation (1.1) and the fundamental solution
matrix of equation (1.2). In our subsequent discussion we assume that the solutions
to equation (1.1) exist on R+.

We need the following inequality due to Bykov and Salpagarov (see [9, Theorem
1.4.2, p. 32]) in the analysis which follows. For detailed account on such inequalities,
see [8,9].
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Lemma 2. Let u (t) , p (t) ∈ C (R+, R+) and for 0 ≤ τ ≤ σ ≤ t < ∞, q (t, σ) ∈
C

(
R2

+, R+

)
, r (t, σ, τ) ∈ C

(
R3

+, R+

)
. If

u (t) ≤ k +

t∫

0


 p (s)u (s) +

s∫

0

{
q (s, σ)u (σ)

+

σ∫

0

r (s, σ, τ) u (τ) dτ



 dσ


 ds, (3.1)

for t ∈ R+, where k ≥ 0 is a constant, then

u (t) ≤ k exp




t∫

0

F (s) ds


 , (3.2)

for t ∈ R+, where

F (t) = p (t) +

t∫

0



q (t, σ) +

σ∫

0

r (t, σ, τ) dτ



 dσ. (3.3)

The following theorem deals with the uniqueness of solutions of equation (1.1).

Theorem 2. Let Y (t) be the fundamental solution matrix of equation (1.2) such that
∣∣Y (t) Y −1 (s)

∣∣ ≤ N, (3.4)

for 0 ≤ s ≤ t < ∞, where N is a positive constant. Suppose that the functions f, g, h

in equation (1.1) satisfy the conditions

|f (t, x (t) , u1)− f (t, y (t) , u2)| ≤ p (t) |x (t)− y (t)|+ |u1 − u2| , (3.5)

|g (t, σ, x (σ) , v1)− g (t, σ, y (σ) , v2)| ≤ q (t, σ) |x (σ)− y (σ)|+ |v1 − v2| , (3.6)

|h (t, σ, τ, x (τ))− h (t, σ, τ, y (τ))| ≤ r (t, σ, τ) |x (τ)− y (τ)| , (3.7)

where p, q, r are as in Lemma 2 and

∞∫

0

F (s) ds < ∞, (3.8)

in which F (t) is given by (3.3). Then the equation (1.1) has at most one solution on
R+.
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Proof. Let x1 (t) and x2 (t) for t ∈ R+ be two solutions of equation (1.1). Then we
have

x1 (t)− x2 (t) =

t∫

0

Y (t) Y −1 (s) {f (s, x1 (s) ,K (s, x1))− f (s, x2 (s) ,K (s, x2))} ds.

(3.9)
From (3.9) and using the hypotheses we have

|x1 (t)− x2 (t)| ≤
t∫

0

N

[
p (s) |x1 (s)− x2 (s)|

+

s∫

0

{
q (s, σ) |x1 (σ)− x2 (σ)|

+

σ∫

0

r (s, σ, τ) |x1 (τ)− x2 (τ)| dτ



 dσ


 ds. (3.10)

Now a suitable application of Lemma 2 (when k = 0) to (3.10) yields x1 (t) = x2 (t),
that is, the equation (1.1) has at most one solution on R+.

The next theorem deals with the boundedness of solutions of equation (1.1).

Theorem 3. Let Y (t) be the fundamental solution matrix of equation (1.2) satisfying
the condition (3.4). Suppose that the functions f, g, h in equation (1.1) satisfy the
conditions

|f (t, x (t) , u)| ≤ p (t) |x (t)|+ |u| , (3.11)

|g (t, σ, x (σ) , v)| ≤ q (t, σ) |x (σ)|+ |v| , (3.12)

|h (t, σ, τ, x (τ))| ≤ r (t, σ, τ) |x (τ)| , (3.13)

where p, q, r are as in Lemma 2 and the condition (3.8) holds. Then all solutions of
equation (1.1) are bounded on R+.

Proof. Any solution x(t), t ∈ R+ of equation (1.1) can be represented by the
equivalent integral equation (2.1). From (2.1) and using the hypotheses we have

|x (t)| ≤ N |x0|+
t∫

0

N

[
p (s) |x (s)|+

s∫

0

{
q (s, σ) |x (σ)|

+

σ∫

0

r (s, σ, τ) |x (τ)| dτ



 dσ


 ds. (3.14)
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Now an application of Lemma 2 to (3.14) yields

|x (t)| ≤ N |x0| exp




t∫

0

F (s) ds


 .

The above estimation, in view of the assumption (3.8) implies the boundedness of all
solutions of equation (1.1) on R+.

Our Theorem 4 below demonstrates that all solutions of equation (1.1) approach
zero as t →∞.

Theorem 4. Let Y (t) be the fundamental solution matrix of equation (1.2) such that
∣∣Y (t)Y −1 (s)

∣∣ ≤ He−α(t−s), (3.15)

for 0 ≤ s ≤ t < ∞, where H and α are positive constants. Suppose that the functions
f, g, h in equation (1.1) satisfy the conditions (3.11)-(3.13) and

∞∫

0


p (s) +

s∫

0



q (s, σ) eα(s−σ) +

σ∫

0

r (s, σ, τ) eα(s−τ)dτ



 dσ


 ds < ∞, (3.16)

holds. Then all solutions of equation (1.1) approach zero as t →∞.

Proof. Any solution x(t), t ∈ R+ of equation (1.1) can be represented by the
equivalent integral equation (2.1). From (2.1) and using the hypotheses (3.15), (3.11)-
(3.13) we have

|x (t)| ≤ ∣∣Y (t)Y −1 (0)
∣∣ |x0|+

t∫

0

∣∣Y (t)Y −1 (s)
∣∣ |f (s, x (s) ,K (s, x))| ds

≤ He−αt |x0|+
t∫

0

He−α(t−s) [p (s) |x (s)|+ |K (s, x)|]ds

≤ He−αt |x0|+
t∫

0

He−α(t−s)

[
p (s) |x (s)|+

s∫

0

{
q (s, σ) |x (σ)|

+

σ∫

0

r (s, σ, τ) |x (τ)| dτ



 dσ


 ds.

The above inequality can be written as

|x (t)| eαt ≤ H |x0|+
t∫

0

H

[
p (s) |x (s)| eαs +

s∫

0

{
q (s, σ) eα(s−σ) |x (σ)| eασ
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+

σ∫

0

r (s, σ, τ) eα(s−τ) |x (τ)| eατdτ



 dσ


 ds. (3.17)

Now applying Lemma 2 with u (t) = |x (t)| eαt to (3.17) and rewriting we obtain

|x (t)| ≤ H |x0| e−αt exp




t∫

0


 p (s) +

s∫

0

{
q (s, σ) eα(s−σ)

+

σ∫

0

r (s, σ, τ) eα(s−τ)dτ



 dσ


 ds


 . (3.18)

The estimation (3.18) in view of the hypotheses (3.16) yields the desired result. The
proof is complete.

A continuous function z(t), t ∈ R+ will be called slowly growing if and only if for
every ε > 0 there exists a constant N , which may depend on ε such that |z (t)| ≤ Neεt,

t ∈ R+.

Finally, we shall give the following theorem which demonstrates that all the solutions
of equation (1.1) grow more slowely than any positive exponential.

Theorem 5. Let Y (t) be the fundamental solution matrix of equation (1.2) such that

∣∣Y (t)Y −1 (s)
∣∣ ≤ Heα(t−s), (3.19)

for 0 ≤ s ≤ t < ∞, where H and α are positive constants. Suppose that the functions
f, g, h in equation (1.1) satisfy the conditions (3.11)-(3.13) and

∞∫

0


p (s) +

s∫

0



q (s, σ) e−α(s−σ) +

σ∫

0

r (s, σ, τ) e−α(s−τ)dτ



 dσ


 ds < ∞, (3.20)

holds. Then all solutions of equation (1.1) are slowely growing.

The proof of this theorem follows by the similar arguments as in the proof of Theorem
4 with suitable modifications. Here we omit the details.

Remark 2. We note that, one can easily extend the ideas of this paper to the equa-
tions of the form (1.1) when the functions f, g, h involved in equation (1.1) depends on
the retarded arguments, under appropriate changes. For the study of such equations,
see [6] and [9, p.185].
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