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Abstract

In this note an elementary proof of the fundamental theorem of algebra is
presented. The proof is self-contained and is based on the Cauchy-Riemann
equations for complex polynomials, Lemma 1.1, and on the second derivative
test for real functions of two variables.

1. Introduction and the Result

Polynomials are perhaps the most simple and useful class of functions that appears
in mathematics. Apart from their theoretical interest, they have enjoyed consider-
able attention over the last two decades in applied areas such as Computer Algebra,
Computational Algebraic Geometry, etc. A polynomial p(z) of degree n is a function
of the form p(z) = anzn + an−1z

n−1 + · · ·+ a1z + a0 , where ai ∈ C, an 6= 0. A root
of p(z) is a number z0 ∈ C such that p(z0) = 0. Observe that if z0 is a root of p(z),
then p(z) is divisible by z − z0. In that regard, we say that z0 has multiplicity k if
p(z) = (z − z0)kQ(z), where Q(z) is a polynomial with Q(z0) 6= 0.

Throughout this note we use the notation z = x+iy = (x, y) for a complex number
z. Similarly, for a polynomial p(z) = p(x + iy) = f(x, y) + ig(x, y); f, g are the real
and imaginary parts of p. The main idea of the proof is to analyze the (real) critical
points of the function F : R2 → R, F (x, y) = f2(x, y) + g2(x, y) = |p(z)|2. It turns
out that if p and p′ have no common roots, F has two kinds of critical points: (1)
minima and (2) saddle points. The existence of at least one minimum, which in turn
is necessarily a root of p(z), completes the proof.

We begin with the following result whose first part gives an inductive proof of the
remarkable Cauchy-Riemann equations for polynomials.

Lemma 1.1 Let p(z) ∈ C[z] be a polynomial of positive degree n. We write p(z) =
p(x + iy) = f(x, y) + ig(x, y) and p′(z) = p′(x + iy) = q(x, y) + ir(x, y). Then,
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Proof. We first consider the special case where p(z) = zn.

1. The proof will be inductive on n. For n = 1, then p(z) = z = x + iy and thus
the result holds. Assume that the result holds for zk = a(x, y) + ib(x, y) and consider
zk+1 = zk ·z = [a(x, y)+ib(x, y)] ·(x+iy) = (ax−by)+i(ay+bx) = P (x, y)+iQ(x, y).
In that case we have
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=
∂Q

∂y

Similarly we can show that ∂P/∂y = −∂Q/∂x.

2. Again, we will use induction on n. If n = 1, the result trivially holds. Suppose
now that p(z) = zk+1 = zk ·z = [a(x, y)+ ib(x, y)] · (x+ iy) = (ax− by)+ i(ay + bx) =
P (x, y) + iQ(x, y). Then ∂P/∂x = a + x∂a/∂x− y∂b/∂x = a + x∂a/∂x + y∂a/∂y =
a + k a = (k + 1)a, since a(x, y) is a homogeneous polynomial of degree k. But
p′(z) = (k + 1)zk = (k + 1) · (a + ib) and thus ∂P/∂x = q. Similarly we have
r = ∂g/∂x.

Finally, since partial derivatives behave well with respect to addition and scalar
multiplication and a polynomial is nothing but a finite sum of constant multiples of
powers of zn, the proof is now complete.

Theorem 1.2 [Fundamental Theorem of Algebra] Every non constant monic poly-
nomial p(z) = zn + a1z

n−1 + · · ·+ an, where ai ∈ C, has a root in C.

Proof. The proof will be inductive on the degree n of p(z). If n = 1, p(z) = z+a0 and
thus p(−a0) = 0. By induction, we may assume that p and p′ have no common roots.
We again write p(z) = p(x + iy) = f(x, y) + ig(x, y), p′(z) = p′(x + iy) = q(x, y) +
ir(x, y), where f, g, q, r are real polynomials. Now consider the function F = f2+g2 =
|p(z)|2. Observe that, lim|z|→∞ |p(z)| = ∞ and thus lim|(x,y)|→∞ F (x, y) = ∞. Also,
in view of Lemma 1.1 we see that

2p(x + iy) p′(x + iy) = 2f
∂f

∂x
+ 2g

∂g
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+ i

(
2f
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)
=

∂F

∂x
+ i

∂F

∂y

where p′ is the complex conjugate of p′. Thus, the (real) critical points of F are
precisely the roots of p and p′, and therefore by induction are finite in number.
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Let C > 0 be so that C is greater than any critical value of F . Consider the set
A = {(x, y) |F (x, y) ≤ C}. Since lim|(x,y)|→∞ F (x, y) = ∞, A is a non empty compact
subset of R2, and thus F has a minimum m0 ∈ R2; we will show that m0 is a root
of p(z). To achieve that, we will prove that every root of p′ is not a minimum of F .
First, note that for any z = (x, y) the Hessian determinant

H(F )(z) =

∣∣∣∣∣
Fxx(z) Fxy(z)

Fyx(z) Fyy(z)

∣∣∣∣∣ = 4
(|p′(z)|2 − |p(z)|2 |p′′(z)|2) (1)

Suppose, now, that z0 is a root of p′, and let m = k − 1 ≥ 1 be its multiplicity.
By replacing z with z − z0, we may assume that z0 = 0. If m = 1, formula (1) shows
that H(F )(z0) = −4

(|p(z0)|2 |p′′(z0)|2
)

< 0 and thus from the second derivative test
for a function of two variables we get that z0 is a saddle point of F (x, y). If m > 1,
then p(z) must have the form p(z) = zkQ(z) + c, where Q(0) · c 6= 0. In that case,
F (x, y) = |p(z)|2 = p(z) p(z) = (zz̄)kQQ + zkQc̄ + cz̄kQ + cc̄. Then, the Taylor series
of F around (0, 0) takes the form

F (x, y) = cc̄ + zkac̄ + z̄kāc + R(x, y)

where a = Q(0) and R(x, y) is a polynomial whose lowest degree term is of degree
greater than k. We are going to show that if U is any neighborhood of (0, 0), F (x, y)−
cc̄ takes on positive, as well as negative values in U . First, we shall need the following.
Let δ > 0 and let Rδ

m be the maximum value of |R(x, y)| on the circle K = {z | z =
δeit}. Then, for each z ∈ K, R(z) = δk+1R∗(δ, t). Thus, if M∗(δ) is the maximum
value of |R∗(δ, t)| on K, we have Rδ

m = δk+1 ·M∗(δ).

Let w = ac̄ + āc and S(z) = zkac̄ + z̄kāc. Note that w, S(z) ∈ R. For b > 0,
denote by bk = k

√
b. We now consider the following cases:

• w 6= 0. Pick ε > 0 so that |w| > εkM∗(εk). Then, if u1, u2 are k-th roots of
ε,−ε, respectively, we have S(u1) = εw and S(u2) = −εw, and |S(ui)| = ε|w| >

εεkM∗(εk) = (εk)k+1 ·M∗(εk) = Rεk
m > |R(ui)|, i = 1, 2. Thus, −|S(u1)| < R(u1) <

|S(u1)| and −|S(u2)| < R(u2) < |S(u2)|. Therefore,

[S(u1) + R(u1)] · [S(u2) + R(u2)] < 0 (2)

• w = 0. Let w1 = ac̄− āc. Then w1 is a non zero purely imaginary number. Pick
ε > 0 so that |w1| > εkM∗(εk). Then, if b1, b2 are k-th roots of iε,−iε, respectively,
we have S(b1) = iεw1 and S(b2) = −iεw1, and |S(bi)| = ε|w1| > |R(bi)|, i = 1, 2.
Thus, we get

[S(b1) + R(b1)] · [S(b2) + R(b2)] < 0 (3)

Finally, let D = {z | |z| < r} be an open disk centered at 0 of radius r > 0. Let, also,
ε > 0 so that εk < r and |w|+ |w1| > 2 εkM∗(εk). Then, using inequalities (2) or (3)
we can find z1, z2 ∈ D so that S(z1) + R(z1) < 0 and S(z2) + R(z2) > 0; that is

F (z1)− cc̄ < 0 and F (z2)− cc̄ > 0 (4)
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Thus, from (4) we get
F (z1) < cc̄ = F (0, 0) < F (z2)

This proves that z0 = (0, 0) cannot be a minimum of F . Therefore, m0 has to be a
root of p.
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