BULLETIN OF THE
GREEK MATHEMATICAL SOCIETY
Volume 53, 2007 (39-57)

Nonlinear Dirichlet problem on a solid torus in the
critical of supercritical case

Athanase Cotsiolis and Nikos Labropoulos

Received 01/06/2005 Accepted 06/04/2006

Abstract
We study a nonlinear elliptic problem on a solid torus T C R?, when the data
of the problem are invariants under the group G = O(2) x I C O(3). We find
the best constants in the Sobolev inequalities which deal with the supercritical
case (the critical of supercritical). We apply these results to solve the problem:

(P) Agu+a(z)u’™" = fz)uP™', u>0 on T, ul,, =0,
2 3

1. Introduction

A lot of effort has been devoted to resolving nonlinear PDEs of the same type with the
above equation. We refer for example to [1, 5, 6, 8, 9, 10, 13, 14, 17, 18, 19, 20, 21, 22]
and the references therein. Best constants in Sobolev inequalities are fundamental in
the study of non-linear PDEs on manifolds [1, 10, 11, 12, 18] and the references therein.
It is also well known that Sobolev embeddings can be improved in the presence of
symmetries [3, 7, 9, 11, 12, 16, 17, 18] and the references therein.

Given (M, g) a smooth, compact n—dimensional Riemannian manifold with bound-
ary we define the Sobolev space H{ (M) as the completion of C°° (M) with respect

to the norm [Ju| ga = [|Vullg+lullg, ¢ > 1 and }ol(f(M) as the closure of C§°(M) in
H(M).
As it is known [1, 15] by the Sobolev embedding theorem one has that for any ¢ € [1,n)
real, the embedding H{(M) < LP(M) is compact for 1 < p < ng/(n — q), while
H{(M) < L"¥/("=9)(M) is only continuous.

Let G be a subgroup of the isometry group of (M, ¢g) and k& be the minimum orbit
dimension of G. Denote by H{ (M) the subspace of H{ (M) of all G—invariant func-
tions. We know by [16] that for any g € [1,n) real, the embedding H{ (M) — L, (M)

is compact for 1 < p < (n—k)q/(n—k—q), while H{ (M) — Lg_k)q/(n_k_q)(M) is
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only continuous. In our case for any ¢ € [1,2) real, the embedding HY (T) — Lg(T)
is compact for 1 < p < 2¢/(2—q), while H{ (T) — Lf?c/;(Qf’J)(T), is only continuous.

The equation Ayu + a(z)uP~ = f(z)uP” 1, with A,u =—div(Vu[P~?Vu) on the
sphere S, is studied in [3], when the functions a and f are invariants under the group
O(m)xO(k), withm+k =n+1, k > m > 2 and p* = pk/(k—p). Here the exponent
p* is supercritical: p* > pn/(n — p).

In the spirit of [1, 10] we determine:
The best constants of the Sobolev inequality

HuH%p(T) < AHV“Hqu(T) + B||u||qu(T),

where 1/p = (1/q) — (1/2), 1 < ¢ < 2, which concern the supercritical case (the
critical of supercritical) p = 2¢/(2 — q) (because p > 3¢/(3 — q)) and we use the above
to solve the following problem:

(P) Agu+a(x)u?™ = f(z)uP™', w>0 on T, ul,, =0.

2. Notations and preliminary results

We study the above nonlinear elliptic problem on a solid torus T C R3, when the
data of the problem are invariants under the group G = O(2) x I C O(3).
Let a solid torus

_ 2
T = {(x,y7z) eR3/ (\/xz—i—yQ—l) + 22 <7r?, l>7‘>0}

and
A={(2:,&) /i=1,2}
an atlas on T defined by
'Ql = {(xvyyz) S T/(l',y,Z) ¢ H}Z}

2y = {($>ya2) € T/(m,y,z) ¢ H;(Z}

where
H;Z = {(m,y,z) ER/z>0,y= O}
Hy,={(z,y,2) eR*/z <0,y =0}
and
fiiﬂi—)IiXD, 221,2
with

I =(0,2m),I, = (—m,m),D ={(t,s) € R?/t? + 5% < 1}
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and
gz('l:ay?Z):(w“tvS)v i:172
with
m ; Y = 1,2
COSW; = —F/———, Sthw; = —F/———, 1t =1,
/(E2+y2 /{L‘2+y2
where
arctan? | x#0 arctan? | x#0
wi =1 72 , =0,y>0 , wy=<( m/2 , z=0,y>0
3m/2 , x=0,y<0 —m/2 , =0,y<0
and

Vaz+y? -1 z
=Y TY 70 o=
T r

The Euclidean metric g on (§2,&) € A can be expressed as

(Vgo &™) (w,t,s) =r*(L+rt).

Consider the spaces of all G—invariant functions under the action of the group G =
0(2) x I C O(3)

Cog={ueC®(T)/uoT =u, V7 eG}
and

Hi o ={ue H{(T)/uoT =u,VT€G},
where H{(T) is the completion of C>°(T) with respect the to norm |lullgs = ||Vull,+
[[ullg-
We denote H{  the completion of C§%, with respect to the norm |[u| go and for all
G—invariants u we define the functions ¢(t,s) = (uo & 1)(w,t,s). Then we have

Il ry = 207 [ fott. )P0+ 7t e ds (2.1

and
Va2, gy = 2772 / Vot )[2(1 + rt) dt ds (2.2)
D

Let K(2,q) be the best constant [1] of the Sobolev inequality

lell, < K(2,9) Vel

for all ¢ € H{(R?). Consider a point P;(z;,y;,2;) € T, and by Op, denote the orbit
of P; under the action of the group G. Let [; = , /x? + y]2 be the horizontal distance
of the orbit Op, from the axis 2'z. For € > 0 given and §; = l;¢, consider a finite

covering (1})._, 5 with

Jj=1

T, — {(m,y,z) eT/ (\/m—lj)2 + (szj)Q < 5?}
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an open small solid torus ( a tubular neighborhood of the orbit Op, ). Then the
following lemma holds.

Lemma 2.1 For alle > 0 and p,q € R with 1/p = (1/q) — (1/2), 1 < q < 2 there
exist 0; = ely, j =1,2,...N such that for all u € C§% the following inequality holds

1/p 1/q
/ |U|Pdv < (1+E)1/P K(27q) / \Vu|qu
T, B (]_ — 5)1/q 27Tl] T,

J

Proof of Lemma 2.1. On every T; we define the subsets {2;;, i = 1,2 of T} in the
same way we defined the subsets €;, i = 1,2 of T'. Also define the maps &;; : Q;; —
I; x D,i=1,2. Then A; = {(£2;;,&;;) /i = 1,2} is an atlas on T; and the Euclidean
metric g on (£2;,¢;) € A; can be expressed as

(Vo &) (wt.s) =87 (L; + 0;t)
Let u € C§ and ¢j = uo {71. According to (2.1) we have:

p 1/p

/|u|pdV < (@2nly) P87 (14 )7 /|¢>j|pdtds (2.3)
T D

Because ¢; € C§°(D) and since the space C§°(D) is dense in H 1(D) with respect
to the norm || - |zs according to lemma 7 of [2] and lemma 3.1 of [14] we have

[
1611, < K(2,9) [[Vo;l,, with ¢ € [1,2) and (1/p) = (1/q) — (1/2).
Finally we have

1/p 1/q

/|u|1’ av| < (27rlj5§(1+5))1/p1((2,q) /\v¢j|qcztds (2.4)

@ D
Moreover from (2.2) we have
/|Vu\PdV2 (1-¢) 27le5J2»_q/\V¢j(t,s)|thds
7 D
Therefore

1/q 1/q

q 2—q ~l/a q
Vo, |dtds | < [(1—5) 21,67 ] 1Vu|? dv(g) (2.5)
D 7
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From (2.4) and (2.5) because of (1/p) = (1/q) — (1/2) we obtain

1/p 1/q
1 ””K 2
/|u\Pdv gz +e) q /|v 74V
1—

1/q
I

3. Results
3.1. Best constants on the solid Torus

Theorem 3.1 Let T be the solid torus and p, q be two positive real numbers such
that 1/p = (1/q) — (1/2) with 1 < g < 2. Then for all € > 0, there exists a constant
B = B(s,q) such that:

1. Forallu EH 1. the following inequality holds

q
K(2,q)
ul|l? < || —=2=| +¢|||Vul|?+ B|ul| 3.1
ull;, < [( 27r(l—r)> [Vl [Jullg (3.1)
2. For allu € Hf,G the following inequality holds
K29 \
lulg < || === ) +e| IVulld+ B |lul (32)
w(l—r)

K(2,9) K(2,9)
\/Qﬂ(l—r) \/w(l—r)

1. and 2. hold for all u Efl‘f’G and u € Hf’G respectively.

The constants are the best constants for which the inequalities

Because of the concentration phenomenon on the orbit of a sequence of solutions of
nonlinear deferential equations, we establish ([16, 12]) inequalities without €.

Theorem 3.2 Let T be the solid torus and p, q be two positive real numbers such
that 1/p = (1/q) — (1/2) with 1 < g < 2. Then there exists B = B(q) > 0 such that:

1. For allu EH%G

|mw<<;%”ﬂ>|WM@+me (33)

2. Forallu € qu’G

|wq<<]ﬁﬁﬂJ|Vu@+wa (3.4
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3.2. Resolution of the problem

We give now an application resolving the problem (P).
Consider the functional

I(u) = / (IVal? + a(@)lul?)av
T
and suppose that the operator
Ly(u) = Agu + a(z)ud™?

is coercive. That is, there exists a real number A > 0, such that, for all u € HfG

I(u) > )\/ luf2dV
T

For
3+2 2q

3
—— +1=6 = — - 2
3724- <p 27(1,2<q<
and for all u € H,, set
p=infl(u),
where

sz{ueﬂgg,um//f(x)updvz1}.
T

Consequently, for the problem
(P) Agu+a(z)u?™" = f(@)uP™', u>0 on T, ul,, =0,
29 3

=1 T <qg<2

P=5_ 5=

we have the theorem:

Theorem 3.3 Let T be a solid torus , o and f be two smooth functions, G—invariant
and p, q be two real numbers defined as in (P). Suppose that supyer f(x) > 0 and the
operator Lqu = Aqu+auq’1 is coercive. The problem (P) accepts a positive solution,

v 2m(l—r)

Corollary 3.1 ([7]) Let T be a solid torus , and o, f be two smooth functions,
G—invariant. Then the problem

—q
that belongs to C* for some o € (0,1), if u < (K(zq)> (supf)=a/».

Au+a(x)u= f(z)uP™', u>0 onT, ul,. =0, p>1
accepts a positive solution that belongs to H%’G.

Throughout the rest of the paper we will denote K = K(2,¢q) and L = 27(l —r).
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4. Proofs of the theorems concerning the best constants

Proof of Theorem 3.1. 1. Let ¢ > 0 given. Consider a point Pj(x;,y;,%;), j € J.
We denote by Op, the orbit of P; under the action of the subgroup G' = O(2) x Id
of the group O(3) of the type (z,y,2) — (A(z,y),2) , A € O(2), (v,y,2) € R3. Let
lj =4 /w? + y? be the horizontal distance of the orbit Op, from the axis 2’z. Then we
can choose an ¢ depending on ¢ and P; such that T = {Q e T/dQ, Op;) < 5j}, with
d; = €ol; having the following properties: 1'; is a submanifold of 1" with boundary,
d?(-,0p,) (where d(-,Op,) is the distance to the orbit Op,) is a C* function on T},
and T' is covered by (T}),c ;- Once more denote by (T}),_; , a finite covering.
According to lemma 2.1 and because of infl; =1 —r, foralleg >0, =1,...,N and
for all u € C5%(T}) the following holds:

q/p
1 q/p K \¢
o) < (Y e
T; Ty

From the last inequality according to lemma 1 of [11] we have:

q/p

/|u|pdV < [f(eo) (\2)(1%} /|vu\qciv+3/|u\%zv, (4.1)

T

where f(go) = (1+¢0)9/?/(1 — &).
Now it’s sufficient to prove that for all € > 0 there exists g9 € (0,1) such that the

following holds:
J (50) ( ) < ( >
\/Z = \/Z

The function f : (0,1) — (1,+00) with f(t) = (1+¢)%/?/(1 —t) is monotonically
increasing, and thus invertible, so the last inequality can be equivalently written:

fleo) <1+4¢ (j{z>q

o< f1 <1 +e <§Z> _q> (4.2)

From (4.1) choosing gy € (0,1) such that (4.2) holds, for all € > 0 and for all u €
C5(T) we obtain:

or

q/p

K q
/|u\pdV < {() +5} /|Vu\qu+B/|u|qu.
T VL T T
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The last relation allow us to use Lemma 1 of [11]. This completes the proof of this
part of theorem 3.1.
Our aim in what follows is to prove that % in Theorem 3.1 is the best constant.

For that purpose, for all € > 0 we need to find a family of functions (uq)a>0 C IO{ (f,G
such that for any given real number E the following inequality holds:

\/Z> +e (4.3)

.T
lim

a—0 q/p
(f [t |? dV)
T

Consider the orbit Oj,y of minimal length 27 (l —7), § = eo(l — 1) < 1, the set T; =
2
{(x,y,z) € R3/ (x/xQ +y2— (- r)) +22 < 62}, and for any o > 0 we define the

function wu,, EIO{(lz,G(Tjo) by

[ |Vua|?dV + E [ |ug|?dV
T
(%

1 (Q) = { (a+d;(Q,Omf))13 - (a+52)1*% it Qe TN,
: ifQ¢gT

where d(Q, O;ny) denotes the distance from @ to the orbit O;,¢. Since u, depends
only on the distance to Oinf, ua € Hf,c' Setting @, = g © f;ol according to (2.1)
and (2.2) for any constant E we obtain:

J IVuu|?dV + E [ |uq|*dV
T T

q/p
(f [t |” dV)
T

218279 [V o |" (I — 7 + 8t) dtds + 2062E [ |¢a|? (I — r + 6t) dtds
D D

q/p
<2m52 [ ¢al? (1 =7+ 6t) dtds)
D
Because the range of Oy, is [ — r from the last relation for § = go(I — ) we get

JIVua|?dV + E [ |us|*dV
T T
q/p
<f|ua|p dV)
T

(I+eg)2r(l—r) (52‘7 [ Vo |'dtds + 6°E [ |¢>a|thds)
D D

<
a/p
[(1 —e0)2m (I —71) 62 [ |¢al” dtds]

D
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(1+eo) [\/%(l — r)} ! <g Voo dtds + §9E [ |pal® dtds>
D
q/p
(1 —gg)a/P <g|¢a|p dtds)

[ IVua|?dV + E [ ug|*dV
T T

lim
a—0 q/p
(f [t |? dV)

J190a["dtds + B[ |60 deds
(VE)" 1im 2 (4.4)

(Lf) |ba|” dtds)

Since (z,y, z) = §j_01(w,t, s) = ((I—r+0dt)cosw, (I —r+6t)sinw, ds)), for any Q € T},
we have

Thus

14+¢g
(1 —gg)a/r

P(Q.0n) = [VE+ 3 — (1= 1) +22 =5 (7 + ) = 3 (5,(Q). Op),

where dp denotes the distance on D and Op is the center of D. Consequently we
have

0a (6,(Q) = [+ 83 (6, (Q), 0p)] " = [a+ 7]/
On the other hand according to [1] and [14] for all v, €H 16(Ds) with va(y) =
( 2\ 1-2/4 o 1-2/q .. .
a+ |yl ) — (a+46%) the following is valid:

f|Vva|thds+Ef|Ua|q dtds

lim = = (45)
(“.[ |Ua |” dtds)
From (4.4) because of (4.5) we obtain

Vuo|?dV + E [|us|?dV q
lim¥ 1 o lte (VL (4.6)
o (fl P dv>q/p T (I—e)ir \ K '

Uq
T

For the completion of the proof of this part of theorem 3.1 it suffices for all ¢ > 0 an
€0 € (0,1) to exist such that

1+s (VI _ (VL)'
7(1_50;/1) <K> < <K> +e (4.7)
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The function g : (0,1) — (1,400) with g(t) = (1+1t)/(1 — t)¢/? is monotonically
increasing and then (4.7) can be written

gleo) <1+e¢ (\i{f>q

gg<g! <1 +e (K>q)
VL
We proved that for all € > 0 there exists an ¢y > 0 with
K\ K\
€0 <min{f1 <1+€<\/f> > , gt (1—&—6(@) )}

such that (4.3) holds for all u, € C§%(T) and this completes the proof of the first
part of the theorem.

or

2. Let A; = {(£245,&;) /i = 1,2} be an atlas on T; and (£2;,;) € A;. Then, by
the definition of (£2;,£;), every €2; is homeomorphic either to I x D, if T; C T or to
I x Dy, if T, NOT # 0, where Dy = {(t,s) € D/s > 0} (see theorem 2.30 of [1]).
Let u € H{ ;. Then nju has support in Tj thus (n;u) € H{ 4(T}) and according to
lemma IX.5 of [4], (n;u) Gﬁl‘iG(Tj).

Now we distinguish the cases:

(a) If T; C T we proved in lemma 2.1 that

1/p 1/q
(1 + 50)1/p

K
ul” dV < /V u)|1dV 4.8
[l e | ] 17 (45)
T I

(b) IfT;NIT #0, as in (4.1), we have

p 1/p

/|77ju|pdV < (2m1;62) 7 (1 +20) 7 /\¢j|pdtd5
7 D

where ¢; = (n;u) o fj_l.
From the last inequality by theorem 2.14 and lemma 2.31 of [1] we obtain that

1/p 1/q

/|nju|”dv < [(2m156%) (1+so)]1/” V2K /|V¢j|thds
I D
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and because of (4.3), (1/p) = (1/¢) — (1/2) and infl; = I —r from the last inequality
we obtain

1/p 1/q
(1+e)” K

Injul” dV < . IV (nu)|*dV (4.9)
T[ (1-eo)V/* VL/2 T[

Finally from (4.9) and according to lemma 1 of [11], for all £ > 0 and for all
u € HY . we have:

q/p
/|u\pdV < /\Vu\qu+B/|u|qu.
T T T

Then, the rest of the proof follows in a way similar to the proof of the first part of
this theorem. a
Proof of Theorem 3.2. We prove the theorem by contradiction. Assuming that the
inequality (3.3) is false, for any o > 0 we may build a positive function u,, which is
a weak solution of the equation

(1+€O)q/p K q+€
I—¢o L/2

Agug +aul™t = N ul !

where A u=—div (\Vu|q_2 Vu) is the g—Laplacian of u.

When a — 400, we show that the functions u, concentrate on the orbit of min-
imum length. This concentration phenomenon leads to a contradiction and this fact
completes the proof of theorem. We define now the concentration orbit.

Definition 4.1 (Concentration orbit).([11]) Set Op a G—orbit of T. Op is an or-
bit of concentration of the sequence (u,) if for any § > 0, the following holds:
lima o0 sup [, ubdv(g) >0, where Op;s = {Q € T/d(Q,Op) < 6}.

We give now a sketch of the proof of theorem 3.2. Following the same arguments as
in [12] we prove that for all subsequences (uq) of (uq), there is only one orbit Op, of
concentration, this orbit is of minimum length 27(I — r) and for any compact set K
of T\Op,, limy_ 00 SUPg uq = 0 holds. In addition we need the following lemma:

Lemma 4.1 For all u € C§4(T) and for all p,q € R, with 1 < ¢ < 2 and 1/p =
(1/q) — (1/2) there exists B > 0 such that the following inequality holds:

K q
Jull < (=) 19l + 5 Ll (4.10)
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Proof of Lemma 4.1. Consider the conformal metric é = f*e of Euclidian e of the
unitary disk D, with f(¢) = (I + rt)l/4 > 0, then we have:

dv(é) = +/det (é)dtds = +/det (f*e)dtds

=/ (f4)* det (e)dtds = f*\/det (e) dtds
= fdv(e) = (1 + rt)duv(e)

Thus
q/p

q/p
</|<p|pdv(é)) . </|cp(t,s)|p(l+rt)dv(e)> (4.11)

q/2 -
Vele = (IVel2) " = [V () V] * =

(Voo (17469) - V] "* = (47" [V - (¢7) - V] =

We also have:

—4\q/2 2\ /2 _4\q/2 1
(r=" (|V80|e) = (/)" Vel = R IVele
So we obtain )

D D
From Theorem 10 of [2] because of (2.1), (4.11), (4.12) and (2.2) we obtain

a/p a/p
lul? dV) (2777“2 lo(t, )P (1 + rt)dtds)
[/ /

q/p
= (2m?)"" /(p(t,s)p(l+rt)dv(e))

q/p
= (m?)"” / sowdv(é))
D

(27r7"2)q/p Kq/|V<,0|gdv(é)+B/|g0qdv(é))
D D

N

/ 1
(27T7~2)q P pra / 7(1 e IVel(l + rt)du(e)

D
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+ (27rr2)Q/pB/|<p|q(l + rt)dv(e)
D

q/p 1
= (2’/TT'2) Kq / W |Vs0‘q(l -+ Tt)dtds
D

+ (27rr2)q/p B/ lo|* (1 + rt)dtds
D
- (QW)(q/p)*1r(2q/p)+q72Kq27rr2fq

1
D

+ (27rr2)(Q/p)_1 27T7‘2B/ lo|?(1 + rt)dtds
D

T T

(K a

— |Vu|qu+B’/|u\qu
L) /

\/> T T

5. Proofs of the theorem concerning the problem

q
_ (\/fi) / L — |Vu|qu+B’/|u|qu

N

Proof of Theorem 3.3. We are interested in the existence of positive solutions u € H ﬁG
of the problem

Agu+a(@x)u?" = f(z)uP™', w>0 on T, ul,, =0, (5.1)

where p = 2¢/(2 — ¢), 3/2 < g < 2. Namely, we focusing our interest in the critical
of supercritical case.

Since the operator Ly(u) = Agu + a(z)u?™! is coercive, a necessary condition for
the existence of positive solutions of the problem is the function f to be somewhere
positive. Indeed, if we multiply by u each term of the equation (5.1) and integrate
we obtain

[ avulr + awunav = [ saywrav
T T

and thus
/f(x)updV >0
T

The last inequality is false if f < 0. In the next we assume that f is somewhere
positive.
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Let
I(u):/ |Vu|qu+/ a(z)uldV
T T
and

H, = {u €HIg u> 0// Flyurdv = 1}
T

We carry through the proof of the theorem in several steps.
Step 1. In the first step, one gets solutions for equations, of the type

Agu+a(x)u?™ = f(z)uP™', u>0 onT, ul,, =0, (5.2)

where p < 2¢/(2 — q) and 3/2 < ¢ < 2, (i.e. subcritical of the critical of supercritical
case).
In this case we consider the set

'sz{ueHﬁG,u>0//f(x)updV=1,6<p<p}
T

and let
;= inf I
Hp ulenHﬁ (u)
Since f is somewhere positive we have H (T') # 0.
For any p < 2¢/(2 — ¢) the imbedding Hf,c — L7, is compact and then the proof of
this step is obtained by using the variation method. (See [1], [15]).
Step 2. In this step, one gets solutions for the critical of supercritical equation,
that is of the initial equation.
Let
= inf I
R
The general idea, (see [25], [23], [1] and [15]), is to get the solution u of (5.1) as the
limit of (a subsequence of) (uz) as p — p, where (up) is the solution of (5.2).
Following [15], as a first result, one can prove that

lim sup pp < p
P—p
For such an assertion, let € > 0 be given and let v € 'H,,, v nonnegative and such that
Iv)<p+e

For p close to p, [, f(z)vPdV # 0 and so v; = ([, f(x)vﬁdV)_l/ﬁv make sense and
belongs to Hp.
Hence
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Moreover
lim I(vp) = I(v)

p—p
As p — p, one gets that
lim sup pp < p+¢
p—p

The fact that such an inequality holds for any € > 0 proves the above claim.

In what follows, up to extraction of a subsequence, we assume that the lim 5
P—p
exists. Let

= lim p;
H pop Hp

Additionally to the hypothesis of the theorem we assume that a subsequence of (uz)
converges in some L*(T),k > 1 to a function u # 0. Since L, is coercive, (u;) is
bounded in HY . Thus there exists a subsequence u; and a function u such that
(a) (up) = won HY 5, (by Banach’s theorem),

(b) (up) — v on LP, (by Kondrakov’s theorem) and

(¢) (up) — u a.e., (by proposition 3.43 of [1]).

(From (c) arises that v > 0 and G—invariant. Moreover, since |Vug| is bounded in
L%, we can assume that for p — p

(|wﬁ|q*2 vuﬁ) ~F
in Lp/(P—1),

Additionally, since u;?l is bounded in Lg/(ﬁ_l) - L’é/(p_l) c LP/(?=1)  we can assume
that

hSThsTl

(up™) = wr?

By passing to the limit as p — p in the equation satisfied by u;’ s, that is equation
(5.2), we obtain

—divF + a(z)ud™' = pf(x)uP !

Since (pf(z)uP~" — a(x)u?™!) is bounded in L' we can prove that F = |Vu|?? Vu,

(see [8]). Hence u is a solution of
Agu+ a(x)u?™" = pf(x)uP! (5.3)
By maximum principles ([24]) and regularity results ([14]) we get that v > 0 and

u € CH* a € (0,1). Moreover multiplying the equation (5.3) by v and integrating
over T', we get that p > 0.
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Now we have to prove that, u € H, and p = I(u).
Multiplying the equation (5.3) by w and integrating over T', we get that

/,L/f(x)updVZ/(\Vu|q+a(a:)uq)dV
T T

< lim inf/ (IVup|* + a(x)ul) dV
p—p
T

= lim inf p;
p—p
hence, [. f(x)uPdV < 1.
Let v = (fT f(x)uPdV)_l/p u. Then v € H, and, according to what has been said

above, we have
1—q/p
p<t)=n( [ swweav)
T

Thus [ f(z)uPdV > 1, so that [, f(z)uPdV =1 and p = 1En7£ I (u).
uetp

Step 3. By step 2, the proof of the theorem reduces to the proof that v # 0. By
theorem 3.1, for all € > 0, there exists a constant B = B(e,q) > 0 such that, the
following holds

</T |u|pdV>Q/p< {(2)114-6} /T\Vu|qu+B/T\u|qu

By assumption, we have

< (25) ety

Thus, there exists € > 0 such that

(72) +] g, 1o < <supm1f ()7

Fix such an €. Then for any p, we have

q/p ‘
K -
/|uﬁ|pdV < {() +6} uﬁ—FBE/u%dV
L
T VL T

for some B, independent of p.
Moreover we have
1

1 / ;
= f(z)ukdV
e @) s @) ) T
p/p
— 1—p
< / ubdV < / ubdv | Vol (T)' PP
T T
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Thus
qa/p 1 1
T/ung > Vol (T) = ®/D/P (qup o f ())??
and then
q
Vol (T)(i/p)(q/p) (supmeTlf (x))q/ﬁ S [(Z) " 6} ot BgT/ung
Since

lim sup pp < inf I(u
pP—p pﬂp \UEHP ( )

passing to the limit as p — p we obtain

or

or

1 K \?
<[ inf I(u)+ B. [ uldv
(uper £ (@) Kﬁ) “] o, L)+ T/ v

(supzeTlfm)q/P ) K;{z) ”} p+B T/ utdv

(supIETi“(x))q/p - Kj{f)q + 6} n<B / uldv

According to the choice of ¢, one gets that

N
K ) (super f (x))*797°

and then [, u?dV > 0. So u # 0. O
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