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Abstract
Lie group symmetry analysis for systems of coupled, nonlinear ordinary dif-

ferential equations is performed in order to obtain the entire solution space to
Einstein’s field equations for certain vacuum Bianchi spacetime geometries. The
symmetries used are the automorphisms of the Lie algebra of the corresponding
three-dimensional isometry group acting on the hyper-surfaces of simultaneity
for each Bianchi Type, as well as the scaling and the time reparametrization
symmetry. The method is applied to Bianchi Types I and II.
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1. Introduction

Automorphisms have been identified as a tool of a unified treatment for Bianchi

geometries since the early 1960Us [1]. In 1979, Harvey [2] found the automorphisms

of all three-dimensional Lie algebras, while the corresponding results for the four-

dimensional Lie algebras have been presented in [3]. In Jantzen’s tangent space

approach the automorphism matrices are considered as the means for achieving a

convenient parametrization of a full scale factor matrix in terms of a desired, diago-

nal matrix [4, 5, 6]. Siklos used these time-dependent automorphisms as a tool for the

proper choice of variables aiming at a simplification of the ensuing equations [7], while

Samuel and Ashtekar were the first to look upon automorphisms from a space view-

point [8]. The notion of Time-Dependent Automorphism Inducing Diffeomorphisms,

i.e., coordinate transformations mixing space and time in the new spatial coordinates

and inducing automorphic motions on the scale-factor matrix, the lapse, and the shift

vector, has been developed in [9]. The use of these covariances enables one to set the

shift vector to zero without destroying manifest spatial homogeneity. At this stage
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one can use the “rigid” automorphisms, i.e., the remaining “gauge” symmetry, as

Lie point symmetries of Einstein’s field equations in order to reduce their order and

ultimately completely integrate them [10]. For a detailed discussion of the relevant

theory see, e.g., [11], [12].

The paper is organized as follows: in Section 2, we give our method. In Sections 3-

4, the application of the method to Bianchi Types I, and II is presented. Conclusions

are presented Section 5.

2. The Method

It is known, that the line element for spatially homogeneous spacetime geometries with

a simply transitive action of the corresponding isometry group [13], [14], assumes the

form

ds2 =
(
NαNα −N2

)
dt2 + 2Nασ

α
i dx

idt+ γαβσ
α
i σ

β
j dx

idxj (1)

dσα = Cαβγσ
β ∧ σγ ⇔ σαi,j − σαj,i = 2Cαβγσ

γ
i σ

β
j . (2)

(Small Latin letters denote world space indices while small Greek letters count the

different basis one-forms).

Subsequently, Einstein’s field equations are given in terms of the extrinsic curva-

ture Kαβ and the Ricci tensor Rαβ of the hypersurface of simultaneity [9]:

Eo
.
= KαβKαβ −K2 −R = 0 (3)

Eα
.
= Kµ

αC
ϵ
µϵ −Kµ

ϵ C
ϵ
αµ = 0 (4)

Eαβ
.
= K̇αβ +N (2Kτ

αKτβ −KKαβ)+

+ 2Nρ
(
KανC

ν
βρ +KβνC

ν
αρ

)
−NRαβ = 0

(5)

Kαβ = − 1

2N

(
γ̇αβ + 2γανC

ν
βρN

ρ + 2γβνC
ν
αρN

ρ
)

(6)

Rαβ = CκστC
λ
µνγκαγβλγ

σνγτµ + 2CκλβC
λ
ακ + 2CµκαC

ν
βλγµνγ

κλ+

2CλκβC
µ
µνγαλγ

κν + 2CλκαC
µ
µνγβλγ

κν .
(7)

In [9], particular spacetime coordinate transformations have been found, which

reveal as symmetries of (3), (4), and (5) the following induced transformations of the

dependent variables N , Nα, γαβ :

Ñ = N, Ñα = Λρα (Nρ + γρσ P
σ), γ̃µν = Λαµ Λ

β
νγαβ (8)

where the matrix Λ and the triplet Pα must satisfy the integrability conditions:

Λαρ C
ρ
βγ = Cαµν Λµα Λ

ν
β (9a)

2Pµ CαµνΛ
ν
β = Λ̇αβ . (9b)
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For all Bianchi Types, this system of equations admits solutions that contain three

arbitrary functions of time plus several constants depending on the automorphism

group of each Bianchi Type. The three functions of time are distributed among Λ

and Pα (which also contains derivatives of these functions). So one can use this

freedom either to simplify the form of the scale factor matrix or to set the shift vector

Nα to zero. The second action can always be taken, since, for every Bianchi Type, all

three functions appear in Pα. In this work we adopt the latter point of view. Having

used the freedom stemming from the three arbitrary functions in order to set the shift

vector to zero, there is still a remaining “gauge” freedom consisting of constant Λαβ
(automorphisms of the Lie algebra defined by Cαβγ ’s). Indeed, the system (9) accepts

the solution Λαβ = const., Pα = 0 (“Rigid” symmetries [15]).

The generators of the corresponding motions γ̃µν = Λαµ Λ
β
ν γαβ induced in the

space of the dependent variables γαβ ’s are:

XI = λρIα γρβ
∂

∂γαβ
(10)

λαIρ C
ρ
βγ = λρIβ C

α
ργ + λρIγ C

α
βρ. (11)

These generators define a symmetry Lie group of motions (with an associated

Lie algebra CIJK) on the configuration space spanned by the γαβ ’s. If a generator

is brought to its normal form (i.e., ∂
∂zi

), then the Einstein field equations, written

in terms of the new dependent variables, will not explicitly involve zi. They thus

become a first order system in the function żi [17]. If the aforesaid Lie algebra is

abelian, then all generators can be brought to their normal form simultaneously. If

the Lie algebra is non-abelian, then we can diagonalize in one step those generators

corresponding to any eventual abelian subgroup. The rest of the generators (not

brought in their normal form) continue to define a symmetry of the reduced system

of the field equations if the Lie algebra of the X(I)’s is solvable [11]. One can thus

repeat the previous step by choosing one of these remaining generators and bring it to

its normal form. This choice will of course depend upon the simplifications brought

to the system at the previous level. Finally, if the Lie algebra does not contain any

abelian subgroup, one can always choose one of the generators, bring it to its normal

form, reduce the system of equations, and search for its symmetries (if there are

any). Lastly, two further symmetries of (3), (4), and (5) are also present and can be

used in conjunction with the constant automorphisms: The time reparametrization

t→ t+ α, owing to the non-appearance of time in these equations (the system being

autonomous), and the scaling by a constant γαβ → λγαβ (homothety) as can be

straightforwardly verified. Hence, in every Bianchi Type there are, added to the X(I)

generators, also the following generators:

Y1 =
∂

∂t
(12)



128 P. A. Terzis, T. Christodoulakis and Th. Grammenos

Y2 = γ11
∂

∂γ11
+ γ12

∂

∂γ12
+ γ13

∂

∂γ13
+ γ22

∂

∂γ22
+ γ23

∂

∂γ23
+ γ33

∂

∂γ33
(13)

These generators commute with each other, as well as with the X(I)’s:

[XI , Yα] = 0 {I = 1, 2, 3, 4 |α = 1, 2} (14)

3. Application of the method

3.1. Bianchi Type I

The Bianchi Type I model is characterized by the following structure constants, basis

1-forms and Killing fields:

Cαβγ = 0 for every value of α, β, γ (15)

σ1 = dx, σ2 = d y, σ3 = d z (16)

ξ1 = ∂x, ξ2 = ∂y, ξ3 = ∂z (17)

From equations (9) we have that the triplet Pα(t) is arbitrary while the automor-

phisms Λαβ ∈ GL3(R) are constants. Hence, the symmetry group contains the nine

prameters of GL3(R) plus the shift parameter corresponding to the generator (12).

Using the triplet Pα(t), we can set the shift vector Nα to zero by applying (8). Fur-

thermore, in order to simplify the field equations, we choose the time gauge N2 = γ,

γ = det(γαβ). In this case, eq. (4) is satisfied identically, while equations (3), (5)

take the form

γµα γνβ γ̇αβ γ̇µν − γαβ γµν γ̇αβ γ̇µν = 0 (18)

γ̈αβ − γρτ γ̇ρα γ̇τβ = 0 (19)

The last equation can be integrated if multiplied by γασ:

γασ γ̇αβ = ϑσβ , ϑσβ = const. (20)

Multiplying the latter by γσρ we obtain the linear system

γ̇βρ = ϑσβ γσρ or, in matrix form, γ̇ = ϑT γ (21)

Thus, (18) becomes the following restriction on ϑαβ ’s:

ϑαβϑ
β
α − (ϑαα)

2 = 0 (22)

The general solution of the linear system (21) is of the form

γαβ = exp (ϑT t)
ρ

α cρβ , exp (ϑT t)
ρ

α cρβ = exp (ϑT t)
ρ

β cρα, cαβ = const. (23)
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In order to find the analytic form of this solution, it is necessary to calculate the

matrix exponential of the 3 × 3 matrix ϑ. To this purpose, we first note that the

metric γαβ transforms, by using GL3(R), as

γαβ = Λµ α Λ
ν
β γ̃µν ⇒ γ = ΛT γ̃ Λ, Λ ∈ GL3(R) (24)

so we have for the linear system (21)

ΛT ˙̃γ Λ = ϑT ΛT γ̃ Λ ⇒ ˙̃γ = ϑ̃ γ̃, ϑ̃ = Λ−T ϑT ΛT (25)

Now, Λ is an arbitrary matrix, hence it can be used to simplify the matrix ϑ. The

degree of simplification depends on the eigenvalues of the matrix ϑ which may be (i)

three real, distinct eigenvalues, (ii) one real and two complex conjugate eigenvalues,

(iii) three real eigenvalues two of which are repeated and, (iv) three real, repeated

eigenvalues. If the matrix ϑ is the zero matrix, then γαβ = const. and the metric thus

obtained describes Minkowski flat spacetime .

3.2. Three real distinct eigenvalues

In this case, we can choose the matrix Λ in such a way as to diagonalize the matrix

ϑ, i.e.

ϑ̃ = diag(p1, p2, p3) ⇒ exp ϑ̃ t = diag(ep1 t, ep2 t, ep3 t). (26)

with the constants (p1, p2, p3) related through (22), i.e.

p21 + p22 + p23 = (p1 + p2 + p3)
2 ⇒ p1 p2 + p1 p3 + p2 p3 = 0 (27)

Since the constants (p1, p2, p3) are different, none of them vanishes. Thus, dividing

by, let’s say, p21, we can eliminate it, so

p2
p1

+
p3
p1

+
p2
p1

p3
p1

= 0 ⇒ α+ β + αβ = 0, α =
p2
p1
, β =

p3
p1

(28)

Making full use of (23) and a final scaling of (x, y, z) we can set cαβ = p−2
1 diag(1, 1, 1).

The change τ = p1 t, results in the following final form of the metric:

d s2 = −e(1+α+β) τ d τ2 + eτ d x2 + eα τ d y2 + eβ τ d z2 (29)

where (α, β) satisfy (28). p−2
1 does not appear in (29) due to the homothety field

H = 2 (α+ 1) ∂τ + α2 x ∂x + y ∂y + (α+ 1)2 z ∂z. (30)

The above metric was first given, although in a different form, by Kasner [18].

The metric is particularly interesting for the values (α, β) = (1,−1/2) or (α, β) =

(−1/2, 1). In addition to the three Killing fields (17), there is now a fourth one in the

form

ξ4 = y ∂x − x ∂y. (31)

The non permitted pair of values (α, β) = (0, 0) leads the metric (29) to its Minkowski

flat form, so we can include these values into the domain of the constants (α, β).
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3.3. One real and two complex conjugate eigenvalues

In this case, the matrix ϑ cannot be diagonalized, but we can choose the matrix Λ in

such a way as to bring the matrix ϑ into its “rational normal form”, i.e.,

ϑ̃ =

p1 0 0
0 0 1
0 −(p22 + p23) 2 p2

 (32)

with eigenvalues (p1, p2 + i p3, p2 − i p3); (p1, p2, p3) are related through (22):

2 p1 p2 + p22 + p23 = 0 ⇒ β = − 2λ

λ2 + 1
, β ≡ p3

p1
, λ ≡ p2

p3
(33)

Full use of (23) and the freedom of using the automorphisms result, after the trans-

formation τ = β p1 t, in the following metric:

d s2 = e(2λ+β
−1) τ d τ2 + eτ/β d x2 − eλ τ sin τ d y2+

+ 2 eλ τ cos τ d y d z + eλ τ sin τ d z2
(34)

which possesses a homothety generated by the field

H = −4λ∂τ − 4λ2 x ∂x +
(
y (−λ2 + 1) + 2λ z

)
∂y −

(
z (λ2 − 1) + 2λ y

)
∂z (35)

This metric was first given, although obtained in a different way, by Harrison [19].

There are special values of the constant λ for which we have a fourth Killing field:

λ = ±
√
3

3
⇒ ξ4 = 6 ∂τ ± 2

√
3x ∂x ∓ (

√
3 y ± 3 z) ∂y + (3 y ∓

√
3 z) ∂z

while there is no homothety. Finally, it is worth noting that in the metric (34) the

hypersurface t = const. is spacelike.

3.4. Three real (two repeated) eigenvalues

In this case, the matrix ϑ can be brought in its Jordan normal form by a proper choice

of the matrix Λ, i.e.

ϑ̃ =

p1 0 0
0 p2 1
0 0 p2

⇒ exp(ϑ̃ t) =

ep1 t 0 0
0 ep2 t ep2 t t
0 0 ep2 t

 (36)

where the constants (p1, p2) are related through (22):

p2 (p2 + 2 p1) = 0 (37)

Here too, the constant p1 is not zero, so dividing the previous relation by p21 yields

λ (λ+ 2) = 0 ⇒ λ = 0 ∨ λ = −2,
p2
p1

= λ (38)
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With the help of the automorphisms and the transformation τ = p1 t we get the

metric

d s2 = e(2λ+1) τ d τ2 + eτ d x2 + τ eλ τ d y2 + 2 eλ τ d y d z (39)

This metric is also a member of the Harrison class [19] and admits a homothety

produced by the field

H = 2 ∂τ + 2xλ ∂x + (λ+ 1) y ∂y + (z (λ+ 1)− y) ∂z (40)

In this case too, the hypersurface t = const. is spacelike. Furthermore, for the value

λ = 0 the metric (39) describes a pp-wave, since the Killing field u = ξ3 = ∂z has zero

covariant derivative and zero measure:

λ = 0 ⇒ uα uα = 0 and uα;β = 0 (41)

3.5. Three real repeated eigenvalues

In this case, the Jordan normal form of the matrix ϑ is

ϑ̃ =

p 1 0
0 p 1
0 0 p

⇒ exp(ϑ̃ t) = ep t

1 t 1
2 t

2

0 1 t
0 0 1

 , (42)

so (22) gives p = 0. Again, full use of (23) and the automorphism matrices, leads to:

d s2 = d t2 + 2 t2 d x2 + d y2 − 4 t d x d y + 4 d x d z (43)

which has the following properties:

— There is a homothety, with the corresponding field

H = t ∂t + y ∂y + 2 z ∂z (44)

— It is a pp-wave metric since, for the Killing field u = ξ3 = ∂z, we have

uα uα = 0 and uα;β = 0 (45)

— The hypersurface t = const. is spacelike.

At this point, the question arises whether the two metrics (39) with λ = 0 and (43)

are actually the same since they both are pp-wave metrics, they have three Killing

fields one of which is timelike, and they both admit a homothety. The classical way

to answer this question is by turning to the scalar invariants that can be constructed

by the Riemann tensor and its covariant derivatives. This approach is not applicable

to our case, since the fact that the metrics are pp-waves implies the vanishing of all
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these scalar invariants. An alternative approach is to find a tensor that is identically

zero for one of the metrics and non zero for the other. This would mean that there is

no coordinate transformation relating the two metrics. If we consider the tensor

Παβγδϵ = Rκ λ
α β Rκγδϵ;λ, (46)

we observe that it vanishes identically for the metric (43) but not for the metric (39)

with λ = 0, i.e., the two metrics are different.

4. Bianchi Type II

Here the non vanishing structure constants, basis 1-forms and Killing fields are:

C1
23 = −C1

32 =
1

2
(47)

σ1 = z dx+ d y, σ2 = d z, σ3 = dx (48)

ξ1 = ∂x, ξ2 = −x ∂y + ∂z, ξ3 = ∂y (49)

From (9) we have for the automorphisms Λαβ and the triplett Pα(t)

Λαβ =

es1+s2 − s3 s4 x(t) y(t)
0 es1 s3
0 s4 es2

 , Pα(t) =

(
P (t),

es1 ẏ − s3 ẋ

es1+s2 − s3 s4
,
s4 ẏ − es2 ẋ

es1+s2 − s3 s4

)
After P (t), x(t) and y(t) are used to eliminate the shift Nα, the residual “rigid”

symmetry is described by

Mα
β =

es1+s2 − s3 s4 s5 s6
0 es1 s3
0 s4 es2

 (50)

The corresponding motions γ̃αβ =Mµ
αM

ν
βγµν are generated by the vector fields

XA =

(
∂γ̃αβ
∂sA

)
s=0

∂

∂γαβ
(51)

where A = {1, 2, 3, 4, 5, 6} and

X1 = 2 γ11 ∂γ11 + 2 γ12 ∂γ12 + γ13 ∂γ13 + 2 γ22 ∂γ22 + γ23 ∂γ23

X2 = 2 γ11 ∂γ11 + γ12 ∂γ12 + 2 γ13 ∂γ13 + γ23 ∂γ23 + 2 γ33 ∂γ33

X3 = γ12 ∂γ13 + γ22 ∂γ23 + 2 γ23 ∂γ33

X4 = γ13 ∂γ12 + 2 γ23 ∂γ22 + γ33 ∂γ23

X5 = γ11 ∂γ12 + 2 γ12 ∂γ22 + γ13 ∂γ23

X6 = γ11 ∂γ13 + γ12 ∂γ23 + 2 γ13 ∂γ33 (52)
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The generators X5, X6 commute with each other, as well as with Y2, so we can bring

them into their normal form by the following transformation of the γαβ :
γ11 = eu1(t), γ12 = eu1t u2(t), γ13 = eu1(t) u3(t)

γ22 = eu1(t) (u22(t) + u4(t))

γ23 = eu1(t) (u2(t)u3(t) + u5(t)), γ33 = eu1(t) (u23(t) + u6(t))

(53)

Before we proceed to the solution of the Einstein equations, we have to find the

values allowed for the functions ui, i = 1, . . . , 6. The determinant of the matrix γαβ ,

is

det[γαβ ] = e3u1
(
u4 u6 − u25

)
, (54)

therefore u4 u6 − u25 > 0.

Starting from the equations E2 = 0, E3 = 0, we get the following system for the

variables u̇2, u̇3:

E2 = 0 ⇒ u5 u̇2 − u4 u̇3 = 0 (55a)

E3 = 0 ⇒ u6 u̇2 − u5 u̇3 = 0. (55b)

This system admits non zero solutions only if u4 u6 − u25 = 0, a condition forbidden

by our restrictions. Thus, we have

u2(t) = k2, u3(t) = k3 (56)

Now, by using the automorphism matrix

Mα
β =

1 −k2 −k3
0 1 0
0 0 1

 , (57)

the matrix γαβ is brought to block diagonal form, and we have the following theorem:

Theorem 4.1 The general solution of Bianchi Type II corresponds to a block diag-

onal form in the basis of the 1-forms σα.

As we have now proved that the matrix γαβ is in block diagonal form with no loss

of generality, we can repeat the former procedure for the calculation of the generators,

i.e., we can start from the matrix

γαβ =

γ11 0 0
0 γ22 γ23
0 γ23 γ33

 (58)

with the corresponding automorphism matrix

Mα
β =

es1+s2 − s3 s4 0 0
0 es1 s3
0 s4 es2

 . (59)



134 P. A. Terzis, T. Christodoulakis and Th. Grammenos

The generators thus obtained are

X1 = 2 γ11 ∂γ11 + 2 γ22 ∂γ22 + γ23 ∂γ23

X2 = 2 γ11 ∂γ11 + γ23 ∂γ23 + 2 γ33 ∂γ33

X3 = γ22 ∂γ23 + 2 γ23 ∂γ33

X4 = 2 γ23 ∂γ22 + γ33 ∂γ23 . (60)

The generators Y2, X1 + X2, X3 commute with each other, so they can be brought

to their normal form by applying the transformation

γαβ =

eu1+4u6 0 0
0 eu1+2u6 u4 eu1+2u6 u4 u5
0 eu1+2u6 u4 u5 eu1+2u6(u4 u

2
5 + 1)

 . (61)

In this parameterization, the only variable the second derivative of which appears in

the field equations is u4, since the generators have been transformed to

Y2 =
∂

∂u1
, X3 =

∂

∂u5
, X1 +X2 =

∂

∂u6
(62)

To further simplify the present situation, we shall also use the generator Y1 = ∂
∂t . The

variable u4, that does not appear in the generators Y2, X1 +X2, X3, can be utilized

in order to parameterize time t, i.e., we can apply the transformation

t→ u4(t) = s, u1(t) → u1(s), u5(t) → u5(s), u6(t) → u6(s) (63)

Of course, this transformation can be applied only in the case where u4(t) is not a

constant function. Hence, we must distinguish between two cases: either the function

u4(t) is constant or it is not.

4.1. The case u4(t) = const.

Let u4(t) = k4. Then, the linear constraints (4) are identically satisfied, while the

quadratic constraint (3) defines the lapse function N2(t) as

N2 = k4 e
u1
(
3 u̇21 − k4 u̇

2
5 + 16 u̇1 u̇6 + 20 u̇26

)
(64)

Substituting the latter into the dynamic equations (5), we can solve them for the

variables ü1, ü5, ü6. Starting from equation E11 = 0, we notice that the coefficient of

ü5 is proportional to the quantity

u̇5 (u̇1 + 4 u̇6). (65)

Therefore, in order to solve for ü5 we must be sure that this coefficient is not zero.

The case u̇1 + 4 u̇6 = 0 leads to a zero lapse, so only the case u5(t) = k5 is left.
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Assuming that u5(t) ̸= k5, we solve equation E11 = 0 for ü5 and, substituting

in equation E22 = 0, we can solve the latter for ü1. The coefficient of ü1 is the

quantity k4 u̇6 which cannot vanish since, for k4 = 0, we have det(γαβ) = 0 while, for

u6(t) = k6, we obtain a zero lapse. Now, substituting in E23 = 0 we get

k4 u̇5 (u̇1 + 3 u̇6) = 0 ⇒ u1 = k1 − 3u6. (66)

However, this leads to u5 = k5, which is impossible in this “branch” of the solution.

If we start with u5 = k5, then the coefficient ü1 in equation E11 = 0 is proportional

to the quantity

u̇6 (u̇1 + 3 u̇6) (67)

The case u6 = k6 leads to a zero lapse, so the case remained to be considered before

we solve equation E11 = 0 for the variable ü1 is

u6(t) = k6 −
u1(t)

3
. (68)

With this value for the function u6(t) the rest of the equations are satisfied identically,

but now the lapse function takes the value

N2 = −1

9
eu1(t) k4 u̇

2
1, (69)

i.e., we have ended up with a metric of Euclidean signature. Using an appropriate

automorphism matrix, and choosing a gauge in which u1(t) = 3 ln t, we get the metric

d s2 = td t2 +
1

t
(σ1)2 + t (σ2)2 + t (σ3)2 (70)

This metric admits an extra Killing field and a homothety:

ξ4 = −2 z ∂x + (z2 − x2) ∂y + 2x ∂z, H = t ∂t + x ∂x + 2 y ∂y + z ∂z (71)

Since we have examined the case where the coefficient of ü1 in E11 = 0 vanishes, we

can solve this equation for this function, so

ü1 =
1

u̇6

(
3 u̇31 + 25 u̇21 u̇6 + (68 u̇26 + ü6) u̇1 + 60 u̇36

)
, (72)

hence the rest of the equations are also satisfied. In order to simplify the latter

equation we choose a gauge in which u6(t) = 3 t, thus obtaining the autonomous first

order equation for u̇1

ü1 = u̇31 + 25 u̇21 + 204 u̇1 + 540 (73)

This equation can be integrated with the help of the transformation

t = y(ξ), u̇1 = ξ, ü1 =
1

y′(ξ)
(74)
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which brings the equation in the following form:

y′(ξ) =
1

(ξ + 10)(ξ + 9)(ξ + 6)
⇒

y(ξ) = k1 +
1

4
ln(ξ + 10)− 1

3
ln(ξ + 9) +

1

12
ln(ξ + 6) (75)

Using an appropriate automorphism matrix and redefining k4 and ξ as k4 = 8
√
3

27 µ2 e−k2

and ξ = −6 5 e2ψ−1
3 e2ψ−1

we obtain the metric

d s2 = µ2
(
−e2ψ coshψ dψ2 + sechψ (σ1)2+ eψ coshψ (σ2)2 + eψ coshψ (σ3)2

)
(76)

with an extra Killing field and no homothety (µ being essential):

ξ4 = −2 z ∂x + (z2 − x2) ∂y + 2x ∂z. (77)

4.2. The case u4(t) ̸= const.

Let us assume that u4(t) = t. Then the linear constraints (4) are satisfied identically,

while the quadratic constraint (3) defines the following lapse function N2(t):

N2 = eu1
(
3 t u̇21 − t2 u̇25 + 2 (8 t u̇6 + 1)u̇1 + 2 (10 t u̇6 + 3) u̇6

)
(78)

Substituting this in equation E11 = 0, we find that the coefficient of ü5 is proportional

to the quantity u̇5 (u̇1+4 u̇6) which cannot vanish since it leads to a zero lapse. Solving

equation E11 = 0 for ü5 and then substituting in equation E22 = 0, we find that the

coefficient of ü6 is proportional to the quantity t u̇1 + 2 which cannot vanish because

in such a case we obtain again a zero lapse. Thus, we can solve for ü6 and substitute

in the rest of the equations. Equation E23 = 0 includes the function ü1 the coefficient

of which is proportional to the quantity

6 t u̇6 + 2 t u̇1 + 1, (79)

the vanishing of which leads, as we shall see, to a metric of Euclidean signature.

Assuming that the quantity (79) is not zero, we get the following system of differential

equations:

ü5 = −2 u̇5
t

(t3 u̇25 + 1) (80a)

ü6 =
1

2 t

(
−6 t u̇21 + t2 u̇25(−4 t u̇6 + 3)− 4 u̇1(8 t u̇6 + 1)− 2 u̇6(20 t u̇6 + 7)

)
(80b)

ü1 =
1

t

(
9 t u̇21 − 5 t2 u̇25 + 6 u̇6(10 t u̇6 + 3) + (48 t u̇6 − 2 t3 u̇25 + 5) u̇1

)
(80c)

We shall first consider the case of a vanishing quantity (79):

6 t u̇6 + 2 t u̇1 + 1 = 0 ⇒ u6 = k6 −
1

6
ln t− 1

3
u1 (81)
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Solving equation E11 = 0 for ü5 and substituting in E22 = 0, we obtain

u̇5 = 0 ⇒ u5 = k5 (82)

that brings equation E33 = 0 into the form

3 t2 ü1 + t2 u̇21 + 7 t u̇1 + 4 = 0. (83)

The latter is a Riccati equation for w1(t) = u̇1(t)

ẇ1 = −1

3
w2

1 −
7

3 t
w1 −

4

3 t2
, (84)

which is easily solvable since a partial solution of it is already known: w1 = − 2
t . With

the transformation

w1(t) = −2

t
+

1

h(t)
, (85)

the equation (84) takes the linear form

ḣ =
1

t
h+

1

3
⇒ h(t) =

t

3
ln t+ k1 t. (86)

By integrating, we finally have for u1(t)

u1 = k2 − 2 ln t+ 3 ln(ln t+ 3 k1). (87)

Redefining the constants k2, k6 as:

k2 = lnµ2 − 3 k1, k6 =
1

24
(3 lnκ2 − lnµ2 + 3 k1), (88)

using an appropriate automorphism matrix and putting t = eξ−3 k1 , we obtain the

following metric of Euclidean signature

d s2 = µ2

(
e−ξ ξ d ξ2 +

1

ξ
(σ1)2 + ξ (σ2)2 + e−ξ ξ (σ3)2

)
. (89)

This metric does not admit a homothety, so the constant µ cannot be absorbed.

Now, returning to the system (80) and multiplying the first equation by u̇5, we

have

u̇5 ü5 = −2 u̇25
t

(t3 u̇25 + 1) ⇒ d u̇25
d t

= −4 u̇25
t

(t3 u̇25 + 1) ⇒

ẏ = −4 y

t
(t3 y + 1), y = u̇25, (90)

i.e. a Ricatti equation for y(t). A partial solution of this equation is y1 = − 1
4 t3 , hence

we can reduce it to a linear differential equation by applying the transformation

y = − 1

4 t3
+

1

h
(91)
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and get

ḣ =
2

t
h+ 4 t2 ⇒ h = − 4

k51
t2 + 4 t3 ⇒ u5 = k52 ±

√
k51 −

1

t
. (92)

Consequently, the last two equations of the system (80) become

ü1 = ⟨u̇1|A1 |u̇6⟩, ü6 = ⟨u̇1|A2 |u̇6⟩, (93)

where use has been made of the notation ⟨u̇i| =
(
1 u̇i u̇

2
i

)
and |u̇i⟩ = ⟨u̇i|t with the

3× 3 matrices A1, A2 given as

A1 =


− 5

4 t2 (k51 t− 1)

18

t
60

10 k51 t− 11

2 k51 t2 − 2 t
48 0

9 0 0

 (94)

A2 =


3

8 t2 (k51 t− 1)
−14 k51 t− 13

2 k51 t2 − 2 t
−20

−2

t
−16 0

−3 0 0

 . (95)

The latter system is of polynomial form in the variables u̇1, u̇6, hence we can simplify

it based on the transformation

u̇1 =
1

2
√
t (k51 t− 1)

(y1 + 5 y2)−
1

t
(96a)

u̇6 =− 1

4
√
t (k51 t− 1)

(y1 + 3 y2) +
1

4 t
. (96b)

Thus, we obtain the system

ẏ1 = − 4 y1 y2 + k51

4
√
t (k51 t− 1)

, ẏ2 = − 4 y1 y2 + k51

4
√
t (k51 t− 1)

(97)

i.e.,

ẏ2 = ẏ1 ⇒ y2 = y1 + k2
√
k51, ẏ1 = −4 y21 + 4 k2

√
k51 y1 + k51

4
√
t (k51 t− 1)

. (98)

The previous Riccati equation is simplified by applying the transformation

t 7→ 1

k51
cosh2(2 τ), y1(t) 7→

√
k51 y1(τ), k2 7→ − coshµ, (99)
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so we get the equation

ẏ1 + 4 y21 − 4 coshµ y1 + 1 = 0 ⇒

y1 =
1

2

[
coshµ− sinhµ tanh

(
2 (k1 − τ) sinhµ

)]
. (100)

Substituting in y1(τ) in (96), we obtain

u1 =c1 − 4 τ coshµ+ 3 ln(cosh(2 (k1 − τ) sinhµ)) + ln
tanh 2 τ

sinh 4 τ
(101a)

u6 =c2 + τ coshµ− ln(cosh(2 (k1 − τ) sinhµ))− 1

4
ln

tanh 2 τ

sinh 4 τ
(101b)

Redefining the constants µ = 2σ, k51 = exp(c1 − 4 k1 cosh 2σ)/2κ2, choosing the

gauge τ = k1 − ξ csch2σ/2 and using appropriate automorphism matrices we arrive

at the form:

d s2 = κ2
(
e2 ξ coth 2σ cosh ξ d ξ2 + sechξ (σ1)2

+ eξ cothσ cosh ξ (σ2)2 + eξ tanhσ cosh ξ (σ3)2
) (102)

This solution was first obtained by Taub [20]. It does not admit a homothety, hence

the constant κ cannot be absorbed. It is noteworthy, that in the limiting case σ →
+∞, this metric reduces to metric (76) which possesses four Killing fields.

5. Conclusions

In this work, the methodology of Lie group symmetry analysis for nonlinear differen-

tial equations has been utilized in order to uncover the entire space of solutions to

Einstein’s field equations in the case of the cosmological models of Bianchi Type I and

II. The symmetries used are the automorphisms of the Lie algebra of the corresponding

three-dimensional isometry group acting on the hyper-surfaces of simultaneity as well

as the scaling and the time reparametrization symmetries. The power of the method

lies in the fact that it constitutes a semi-algorithm which, if successfully implemented,

leads to the acquisition of the entire space of solutions. The general solutions, not con-

sidered as such at the time of their first derivation and containing one or two essential

constants, were produced with the aid of various simplifying ansätze in a time scale

of half a century: Kasner (1921), Taub (1951), and Harrison (1959). In the present

work, they are comprehensively re-obtained along with solutions not attributed to any

one else and which, to the best of our knowledge, are new: The Bianchi Type I metric

(43) and the Bianchi Type II metrics (70) (of Euclidean signature), (76), and (89)

(of Euclidean signature). We should point out that the production of metrics with

Euclidean signature may, at first sight, strike as odd, since our starting point is a line

element of Lorentzian signature. However, this is made possible by allowing the lapse

to be determined through the quadratic constraint equation instead of prescribing it

by an ab initio choice of time gauge.
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