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Abstract
We consider the periodic initial-value problem for the family of a-b-c-d Boussi-

nesq systems, [8], [9], and their completely symmetric analogs, [10]. We ap-
proximate their solutions by the standard Galerkin-finite element method using
smooth periodic splines for discretizing in space. We prove optimal-order L2

error estimates for the resulting semidiscretizations. The numerical schemes are
usual in computations of cnoidal-wave solutions of these systems, as well as of
solitary-wave solutions of systems with negative b and d.

1. Introduction

In this note we consider the so-called a-b-c-d Boussinesq systems of water wave theory,
[8], [9]

ηt + ux + (ηu)x + auxxx − bηxxt = 0 , (1.1)

ut + ηx + uux + cηxxx − duxxt = 0 , (1.2)

as well as the analogous problem for their symmetric relatives, [10]

ηt + ux +
1
2 (ηu)x + auxxx − bηxxt = 0 , (1.3)

ut + ηx +
1
2ηηx +

3
2uux + cηxxx − duxxt = 0 . (1.4)

Here η and u are real-valued functions of x ∈ R and t ≥ 0 and a, b, c, d are real
constants, which for modelling purposes should satisfy a + b = 1

2 (θ
2 − 1/3), c + d =

1
2 (1− θ2) for some θ ∈ [0, 1]. Three categories of a-b-c-d systems were identified in [8]
to have the property that their Cauchy problems are linearly well posed. These were:

(C1) b ≥ 0, d ≥ 0 , a ≤ 0 , c ≤ 0 ,
(C2) b ≥ 0, d ≥ 0 , a = c > 0 ,
(C3) b = d < 0 , a = c > 0 .

The Cauchy problem for systems with coefficients belonging to (C1) and (C2) was
shown in [9] to be nonlinearly well posed, at least locally in time. The systems
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of category (C3) were not analyzed in [9] due to the singular nature of the elliptic
operator I − µ∂2x, where µ = b = d. In [10] it was shown that the ‘completely’
symmetric systems of the form (1.3) − (1.4) with a = c and b, d ≥ 0 are nonlinearly
well posed locally in time. Examples of well known Boussinesq systems include the
family of the Bona-Smith systems (a = 0, b = d = (3θ2 − 1)/6, c = (2 − 3θ2)/3,
2
3 ≤ θ2 < 1), cf. [14], [4], [5], whose member with θ2 = 2/3, i.e. with a = 0, c = 0,
b = d = 1/6, is the BBM-BBM system, [7], the so-called ‘classical’ Boussinesq system
(a = b = c = 0, d = 1/3), [23], [1], [3], and the KdV-KdV system (b = d = 0,
a = c = 1/6), [12], [13].

In the present paper we shall consider the periodic initial-value problem for (1.1)−
(1.2) and (1.3)− (1.4) on the spatial interval [0, 1] with given initial conditions

η(x, 0) = η0(x) , u(x, 0) = u0(x) , x ∈ [0, 1] , (1.5)

where η0 and u0 are smooth 1−periodic functions. We shall assume that the peri-
odic initial-value problems for the systems that will be approximated numerically in
the sequel possess sufficiently smooth unique solutions at least on a temporal inter-
val [0, T ]. We shall discretize the periodic initial-value problems in space using the
standard Galerkin-finite element method, based on smooth, 1−periodic splines on a
uniform mesh in [0, 1]. The resulting semidiscretizations are represented by initial-
value problems for systems of o.d.e.’s. After introducing the relevant notation and
the approximation properties of the spline spaces in Section 2, we prove, in Section
3, error estimates for the Galerkin approximations, that are of optimal rate of con-
vergence in L2, for several types of systems. Specifically, our convergence proofs are
valid for the usual systems (1.1) − (1.2) provided their coefficients belong either to
a subset of the class (C1) that is defined in Section 3 and includes e.g. the Bona-
Smith, the BBM-BBM, and the ‘classical’ Boussinesq but not the KdV-KdV system,
or to a subset of the class (C2) or to the class (C3) provided that b ̸= − 1

4n2π2 , for
n = 1, 2, 3, . . . . The analogous Galerkin semidiscretizations of the completely sym-
metric systems (1.3) − (1.4) with a = c, b, d ≥ 0 are analyzed in Section 4; they all
possess an L2 optimal-order convergence theory.

The error analysis of the semidiscretizations is based on the properties of suitable
quasiinterpolants of smooth periodic functions in the space of periodic splines, that
afford proving some crucial cancellation properties used in the estimation of the trun-
cation error of the semidiscrete approximations. This technique was introduced by
Thomée and Wendroff in [24] in the context of approximating periodic solutions of
linear p.d.e.’s, and has been utilized to prove optimal-order error estimates for nonlin-
ear dispersive wave equations in [6], [18], [11], for Boussinesq systems of Bona-Smith
and ‘classical’ type in [2] and for completely symmetric systems of KdV-KdV type in
[21]. Here it is extended to cover more general cases. To discretize the semidiscrete
systems in the temporal variable one may use explicit Runge-Kutta methods in case
the systems are not stiff (as e.g. the Bona-Smith systems, [2], [5],) or mildly stiff (as
e.g. the ‘classical’ Boussinesq system, [2], [3]). Systems with purely KdV type disper-
sion terms are very stiff and should be discretized by time-stepping methods having
good nonlinear stability properties, such as the Gauss-Legendre implicit Runge-Kutta
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schemes, [11], [21], [12], [13]. The error analysis of such full discretizations will not
be carried out in this paper; the reader is referred to the papers mentioned above.

In Section 5 we check our fully discrete scheme with explicit, fourth-order Runge-
Kutta time-stepping by simulating cnoidal-wave solutions for one Bona-Smith system
for which it is possible to derive closed formulas for this type of solutions of the
periodic initial-value problem. We also construct generalized solitary-wave solutions
of systems of class (C3) and use the numerical code to study the evolution that ensues
from an initial ‘heap of water’ for this type of systems.

In this paper, we denote by Hk
per, for k ≥ 0 integer, the usual, L2−based (real)

Sobolev spaces of periodic functions on [0, 1] with associated norm ∥ · ∥k. The norm
on L2 = L2(0, 1) will be denoted by ∥ · ∥ = ∥ · ∥0 and the associated inner product by
(·, ·). The norms on L∞(0, 1) and W 1,∞(0, 1) will be denoted by ∥ · ∥∞ and ∥ · ∥1,∞,
respectively.

2. Smooth periodic splines and the quasiinterpolant

Let N be a positive integer, h = 1/N , and xj = jh, j = 0, 1, . . . , N . For integer r ≥ 3
consider the associated N−dimensional space of smooth 1−periodic splines

Sh = {ϕ ∈ Cr−2
per [0, 1] : ϕ

∣∣
[xj ,xj+1]

∈ Pr−1 , 0 ≤ j ≤ N − 1} ,

where

Csper = {f ∈ Cs[0, 1] : f (k)(0) = f (k)(1) , 0 ≤ k ≤ s} ,

and Pr−1 are the polynomials of degree at most r − 1. In what follows C will denote
a generic constant independent of h.

It is well known that Sh has the approximation property that given a sufficiently
smooth 1−periodic function w, there exists a χ ∈ Sh such that

s−1∑
j=0

hj∥w − χ∥j ≤ Chs∥w∥s , 1 ≤ s ≤ r , (2.1)

for some constant C independent of h and w. In addition, the following inverse
inequalities hold : There exists a constant C independent of h such that

∥χ∥β ≤ Ch−(β−α)∥χ∥α , 0 ≤ α ≤ β ≤ r − 1 , (2.2a)

∥χ∥∞ ≤ Ch−1/2∥χ∥ , (2.2b)

for all χ ∈ Sh . Following Thomée and Wendroff, [24], one may construct a basis
{ϕj}Nj=1 of Sh, with supp(ϕj) = O(h), such that for a sufficiently smooth 1−periodic
function w, the associated quasiinterpolant

Qhw =
N∑
j=1

w(xj)ϕj ,
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satisfies

∥w −Qhw∥ ≤ Chr∥w(r)∥ . (2.3)

In addition, it follows from [24] that the basis {ϕj}Nj=1 may be chosen so that the
following properties hold :
(i) If ψ ∈ Sh, then

∥ψ∥ ≤ Ch−1 max
1≤i≤N

|(ψ, ϕi)| . (2.4)

(ii) Let w be a sufficiently smooth 1−periodic function and ν, κ integers such that
0 ≤ ν, κ ≤ r − 1 . Then(

(Qhw)
(ν), ϕ

(κ)
i

)
= (−1)κhw(ν+κ)(xi) +O(h2r+j−ν−κ) , 1 ≤ i ≤ N , (2.5)

where j = 1 if ν + κ is even, and j = 2 if ν + κ is odd.
(iii) Let f , g be sufficiently smooth 1−periodic functions and ν and κ as in (ii) above.
Let

βi =
(
f(Qhg)

(ν), ϕ
(κ)
i

)
− (−1)κ

(
Qh[(fg

(ν))(κ)], ϕi
)
, 1 ≤ i ≤ N .

Then

max
1≤i≤N

|βi| = O(h2r+j−ν−κ) , (2.6)

where j as in (ii) .

3. Semidiscretization of the usual a-b-c-d Boussinesq systems

In this section we consider the periodic initial-value problem on [0, 1] of the system
(1.1)−(1.2), discretize it in space in Sh and analyze the resulting semidiscrete problem,
which is defined as follows : We seek ηh , uh ∈ C1(0, T ;Sh), so that for 0 ≤ t ≤ T

(ηht, ϕ) + (uhx, ϕ) + ((ηhuh)x, ϕ)− a(uhxx, ϕ
′) + b(ηhtx, ϕ

′) = 0 , ∀ϕ ∈ Sh , (3.1)

(uht, χ) + (ηhx, χ) + (uhuhx, χ)− c(ηhxx, χ
′) + d(uhtx, χ

′) = 0 , ∀χ ∈ Sh , (3.2)

where the initial values ηh(0), uh(0) will be suitable approximations in Sh of η0,
u0, respectively. Here [0, T ] is a temporal interval in which smooth solutions of the
periodic initial-value problem for (1.1) − (1.2) exist uniquely. We first estimate a
suitable truncation error of the system (3.1)− (3.2) as in [2].

Lemma 3.1 Let H = Qhη, U = Qhu and define ψ, ζ ∈ Sh so that for 0 ≤ t ≤ T

(Ht, ϕ) + (Ux, ϕ) + ((HU)x, ϕ)− a(Uxx, ϕ
′) + b(Htx, ϕ

′) = (ψ, ϕ) , ∀ϕ ∈ Sh , (3.3)

(Ut, χ) + (Hx, χ) + (UUx, χ)− c(Hxx, χ
′) + d(Utx, χ

′) = (ζ, χ) , ∀χ ∈ Sh . (3.4)

Then, there is a constant C independent of h and t, such that

∥ψ(t)∥+ ∥ζ(t)∥ ≤ Chr , ∀t ∈ [0, T ] . (3.5)
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Proof : Applying (2.5) to (3.3) and using the p.d.e. (1.1) yields for 1 ≤ i ≤ N ,
0 ≤ t ≤ T

(ψ, ϕi) = h(ηt + ux + auxxx − bηtxx)(xi, t) +O(h2r−1) + ((HU)x, ϕi)

= −h(ηu)x(xi, t) +O(h2r−1) + ((HU)x, ϕi)

= −
(
[Qh(ηu)]x, ϕi

)
+ ((HU)x, ϕi) +O(h2r−1) .

Since
HU −Qh(ηu) = εe+ ηu− uε− ηe−Qh(ηu) ,

where ε := η −H, e = u− U , we have, using (2.6), for 1 ≤ i ≤ N(
ψ, ϕi

)
=
(
(εe)x, ϕi

)
+
(
uε, ϕ′i

)
+
(
ηe, ϕ′i

)
+
(
(ηu)x −Qh

[
(ηu)x

]
, ϕi
)

+
(
Qh
[
(ηu)x

]
−
[
Qh(ηu)

]
x
, ϕi
)
+O(h2r−1)

=
(
(εe)x, ϕi

)
−
(
(ηu)x −Qh

[
(ηu)x

]
, ϕi
)
+O(h2r−1) .

Therefore, by (2.4) we obtain, using (2.3) and (2.1)

∥ψ∥ ≤ C
(
∥ε∥1∥e∥1 + ∥(ηu)x −Qh

[
(ηu)x

]
∥+ h2r−2

)
≤ C

(
∥ε∥1∥e∥1 + hr

)
≤ Chr .

The analogous estimate for ∥ζ∥ follows similarly. �
We will now prove an optimal-order L2 error estimate for the semidiscrete problem

(3.1)− (3.2). For this purpose we will assume that the dispersion coefficients a, b, c,
d of the Boussinesq system (1.1)− (1.2) belong to one of the following categories :
(C1.i) b > 0, d > 0, a < 0, c < 0. (The ‘generic’ case.)
(C1.ii) One of b, d is positive and the other is zero, and a < 0, c < 0.
(C1.iii) b > 0, d > 0, a ≤ 0, c ≤ 0, a · c = 0. (This case includes the Bona-Smith
systems for which b = d > 0, a = 0 and c < 0, and the BBM-BBM system b = d > 0,
a = c = 0.)
(C1.iv) One of the b, d is positive and the other is zero, and a = c = 0. (This case
includes the ‘classical’ Boussinesq system for which a = b = c = 0, d > 0.)
(C2.i) b ≥ 0, d ≥ 0 with b+ d ̸= 0, a = c > 0.
(C3) b = d < 0, a = c > 0.
Note that the union of (C1.i), (C1.ii), (C1.iii), (C1.iv) is a proper subset of (C1)
defined in the Introduction, and that (C2.i) is a proper subset of (C2). In the sequel,
we will examine (C3) separately.

Theorem 3.1 Suppose that a, b, c, d satisfy one of the conditions (C1.i), (C1.ii),
(C1.iii), (C1.iv) or (C2.i). Let ηh(0) = Qhη0, uh(0) = Qhu0. Then, for h sufficiently
small, the initial-value problem consisting of (3.1), (3.2) and the specified initial values

has a unique solution (ηh, uh) ∈
(
C1(0, T ;Sh)

)2
which satisfies

max
0≤t≤T

(∥η − ηh∥+ ∥u− uh∥) ≤ Chr . (3.6)
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Proof : Let θ := Qhη − ηh , ξ := Qhu − uh . Then, from (3.1) − (3.2), (3.3) − (3.4)
there follows that

(θt, ϕ) + (ξx, ϕ) +
(
(Hξ + Uθ − θξ)x, ϕ

)
− a(ξxx, ϕ

′) + b(θtx, ϕ
′) = (ψ, ϕ) , ∀ϕ ∈ Sh ,

(3.7)

(ξt, χ) + (θx, χ) +
(
(Uξ)x − ξξx, χ

)
− c(θxx, χ

′) + d(ξtx, χ
′) = (ζ, χ) , ∀χ ∈ Sh ,

(3.8)

θ(0) = ξ(0) = 0 . (3.9)

Putting ϕ = θ in (3.7) and χ = ξ in (3.8) and using periodicity we have

1
2
d
dt

(
∥θ∥2+b∥θx∥2

)
+(ξx, θ)+

(
(Hξ)x, θ

)
+ 1

2 (Uxθ, θ)−
1
2 (ξxθ, θ)− a(ξxx, θx) = (ψ, θ) ,

(3.10)
1
2
d
dt

(
∥ξ∥2 + d∥ξx∥2

)
+ (θx, ξ) +

(
(Uξ)x, ξ

)
− c(θxx, ξx) = (ζ, ξ) . (3.11)

Note that (2.3) and inverse estimates like (2.2a, b) imply that ∥H∥1,∞ + ∥U∥1,∞ ≤ C
for 0 ≤ t ≤ T .

Let th ∈ (0, T ] be the maximal temporal instance for which the initial-value prob-
lem (3.7)− (3.9) has unique solution such that

∥θ(t)∥∞ ≤ 1 for 0 ≤ t ≤ th . (3.12)

Let first a, b, c, d satisfy condition (C1.i). Multiplying (3.10) by −c and (3.11) by
−a, adding the resulting equations, and using the Cauchy-Schwartz inequality, (3.12)
and (3.5) we obtain for 0 ≤ t ≤ th

|c| ddt
(
∥θ∥2+b∥θx∥2

)
+|a| ddt

(
∥ξ∥2+d∥ξx∥2

)
≤ C

[
(∥θ∥2+b∥θx∥2)+(∥ξ∥2+d∥ξx∥2)+h2r

]
,

for some constant C independent of h and th . Using (3.9) and Gronwall’s Lemma we
see that

∥θ(t)∥1 + ∥ξ(t)∥1 ≤ Chr (3.13)

holds for 0 ≤ t ≤ th, which implies, by Sobolev’s inequality, that ∥θ(t)∥∞ ≤ Chr

for 0 ≤ t ≤ th . Therefore, if h is sufficiently small, (2.2b) and (3.12) imply that th
may be taken to be equal to T . Existence-uniqueness of solutions of the initial- value
problem (3.1)− (3.2) in [0, T ] follows, as does (3.6) in view of (2.3).

In case that (C1.ii) is satisfied with e.g. b = 0, d > 0, similar considerations imply
that

∥θ(t)∥+ ∥ξ(t)∥1 ≤ Chr , 0 ≤ t ≤ th ,

and the conclusion of the Theorem follows. If (C1.iii) holds, we argue, cf. [2], as
follows. Suppose e.g. that a = 0, c < 0. We may then write (3.7) in the form

A(θt, ϕ) +
(
(ξ +Hξ + Uθ − θξ)x, ϕ

)
= (ψ, ϕ) ∀ϕ ∈ Sh ,

which implies that θt = RhΘ, where Θ is the solution of the problem Θ − bΘ′′ =
ψ−(ξ+Hξ+Uθ−θξ)x on [0, 1] with periodic boundary conditions, andRh is the elliptic
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projection onto Sh defined in terms of the bilinear form A(v, w) := (v, w)+b(v′, w′) on
H1
per. It is not hard to see, cf. [2], [5], that Rh is stable on H2

per. This property and
elliptic regularity of the above mentioned two-point periodic boundary-value problem
yields that

∥θt∥2 ≤ C(∥ψ∥+ ∥ξ +Hξ + Uθ − θξ∥1) .

Suppose now that th ∈ (0, T ] is the maximal time for which e.g. ∥ξ(t)∥1 ≤ 1 for
0 ≤ t ≤ th . Then the above estimate and (3.5) yield that

∥θt∥2 ≤ C(hr + ∥θ∥1 + ∥ξ∥1) , 0 ≤ t ≤ th . (3.14)

Putting now χ = ξt in (3.8) we see that

∥ξt∥1 ≤ C(hr + ∥θ∥2 + ∥ξ∥1) , 0 ≤ t ≤ th . (3.15)

Hence, (3.14), (3.15), and Gronwall’s Lemma imply that

∥θ(t)∥2 + ∥ξ(t)∥1 ≤ Chr for t ∈ [0, th] ,

and it may be seen again that th can be taken equal to T and that the conclusion
of the Theorem follows. If a < 0, c = 0, the roles of θ and ξ are reversed. Finally,
if a = c = 0, the proof proceeds easily by putting ϕ = θ in (3.7) and χ = ξ in (3.8),
which leads again to an inequality of the type (3.13).
To treat the case (C1.iv) suppose, for example, that b = 0, d > 0, and a = c = 0.
Assuming ∥θ(t)∥∞ ≤ 1 for 0 ≤ t ≤ th, adding (3.10) and (3.11), and using (3.5) we
obtain

∥θ(t)∥+ ∥ξ(t)∥1 ≤ Chr , for 0 ≤ t ≤ th ,

and the conclusion of the theorem follows as before. In the case (C2.i) assume e.g.
that b = 0, d > 0. Then adding (3.10) and (3.11), using periodicity and the fact
that a = c gives, again under the hypothesis that ∥θ(t)∥∞ ≤ 1 for 0 ≤ t ≤ th ,
that ∥θ(t)∥ + ∥ξ(t)∥1 ≤ Chr for 0 ≤ t ≤ th and the proof proceeds analogously.

�
Remark: The hypothesis in Theorem 3.1 that the initial values ηh(0), uh(0) are taken
as the quasiinterpolants of η0, u0, respectively, is convenient in that it allows, in all
cases, to apply Gronwall’s Lemma with θ(0) = ξ(0) = 0 and obtain (superaccurate
in general) estimates like (3.13) etc., from which the L2 estimates for the errors
η−ηh , u−uh follow. In several cases ηh(0) and uh(0) may be taken, more generally,
as optimal-order in L2 approximations of η0, u0, respectively, for example as L2

projections onto Sh, interpolants etc. Thus, e.g. in case (C1.ii), if b = 0, it suffices
that ηh(0) − η0 = O(hr) in L2 . Similar observations may be made in the cases
(C1.iv) and (C2.i). �

We proceed now to the case (C3). Here we assume that the periodic initial-value
problem for the corresponding Boussinesq system is well posed locally in time and
that b = d ̸= −1/(4n2π2), for n = 1, 2, . . . , so that the problem

w + |b|w′′ = 0 on [0, 1] ,
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with periodic boundary conditions, has only the trivial solution. From the Fredholm
alternative and standard o.d.e. theory it follows that for f ∈ L2(0, 1) the nonhomo-
geneous problem

− |b|w′′ − w = f on [0, 1] , (3.16)

with periodic boundary conditions, has a unique solution w ∈ H2
per that satisfies the

estimates
∥w∥2−j ≤ C∥f∥−j , j = 0, 1, 2 , (3.17)

where the negative norms are defined as usual by

∥f∥−j = sup
v∈Hjper
v ̸=0

(f, v)

∥v∥j
, j = 1, 2 .

We begin the error estimation by stating the following result due to Schatz, [22],
including its proof for the convenience of the reader.

Lemma 3.2 Let f ∈ L2(0, 1) and w be the solution of (3.16) with periodic boundary
conditions, and |b| ̸= 1/4n2π2, n = 1, 2, 3, . . . . Then, there exist positive constants
h0 and C such that the discrete problem

|b|(w′
h, ϕ

′)− (wh, ϕ) = (f, ϕ) , ∀ϕ ∈ Sh , (3.18)

has a unique solution for h ≤ h0, for which there hold

∥w − wh∥ ≤ Ch∥w − wh∥1 , (3.19)

and
∥w − wh∥1 ≤ C∥w∥1 . (3.20)

Proof : Assume that (3.18) has a solution wh ∈ Sh and let e = w − wh. Then, from
(3.16) and (3.18) we have

|b|(e′, ϕ′)− (e, ϕ) = 0 , ∀ϕ ∈ Sh . (3.21)

Let v be the solution of the problem

−|b|v′′ − v = e on [0, 1] ,

with periodic boundary conditions. Then, cf. (3.17), for some constant C = C(|b|) it
follows that

∥v∥2 ≤ C∥e∥ . (3.22)

Moreover, using (3.21), for each χ ∈ Sh we have

∥e∥2 = |b|(e′, v′)− (e, v) = |b|(e′, v′ − χ′)− (e, v − χ)

≤ (|b|+ 1)∥e∥1∥v − χ∥1 .
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Hence, using (2.1), we obtain, for some constant C1 independent of h,

∥e∥ ≤ C1h∥e∥1 . (3.23)

Now, from (3.21) it follows that

|b|∥e′∥2 − ∥e∥2 = |b|(e′, w′)− (e, w) .

Therefore,
|b|∥e∥21 ≤ (1 + |b|)(∥e∥2 + ∥e∥1∥w∥1) ,

and by (3.23)
|b|∥e∥21 ≤ C1h

2(1 + |b|)∥e∥21 + (1 + |b|)∥e∥1∥w∥1 ,

so that, for h sufficiently small, |b| − C1h
2(1 + |b|) > 0, and

∥e∥1 ≤ C1∥w∥1 . (3.24)

It follows that (3.18) has a unique solution, since if f = 0 then w = 0, and by (3.24)
wh = 0. The required estimates (3.19) and (3.20) are the inequalities (3.23) and
(3.24). �
We may now prove a result analogous to that of Theorem 3.1 in the case (C3).

Theorem 3.2 Suppose a, b, c, d satisfy condition (C3) and that |b| ≠ 1/4π2n2,
n = 1, 2, 3, . . . . Let r ≥ 4 and ηh(0) = Qhη0, uh(0) = Qhu0. Then, for h sufficiently
small, the initial-value problem consisting of (3.1), (3.2) and the specified initial values

has a unique solution (ηh, uh) ∈
(
C1(0, T ;Sh)

)2
that satisfies

max
0≤t≤T

(∥η − ηh∥+ ∥u− uh∥) ≤ Chr . (3.25)

Proof : Let θ := Qhη − ηh, ξ = Qhu − uh. Then (3.7) − (3.9) hold with b = d < 0,
a = c > 0. The initial-value problem (3.7) − (3.9) has a local in time solution for
h sufficiently small, essentially because (3.18) has a unique solution for such h. Let
th ∈ (0, T ] be the maximal temporal instance for which the initial-value problem
(3.7)− (3.9) has a unique solution such that

∥ξ(t)∥∞ ≤ 1 for t ∈ [0, th] . (3.26)

Then, there holds that

d
dt

(
∥θ∥2 + ∥ξ∥2

)
≤ C

(
∥θ∥21 + ∥ξ∥21 + h2r

)
, 0 ≤ t ≤ th . (3.27)

To see this, for 0 ≤ t ≤ th let Θ be the solution of the problem

Θ+ |b|Θxx = −ξx − aξxxx − (Hξ + Uθ − ξθ)x + ψ , on [0, 1] ,

with periodic boundary conditions, and Ξ be the solution of

Ξ + |b|Ξxx = −θx − aθxxx −
(
(Uξ)x − ξξx

)
+ ζ , on [0, 1] ,
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with periodic boundary conditions. Using periodicity to estimate the negative norms
of the right-hand sides of the above problems, we have by (3.17) and (3.5)

∥Θ∥1 ≤ C(∥ξ∥2 + ∥θ∥+ hr) , (3.28)

∥Θ∥ ≤ C(∥ξ∥1 + ∥θ∥+ hr) , (3.29)

∥Ξ∥1 ≤ C(∥θ∥2 + ∥ξ∥+ hr) , (3.30)

∥Ξ∥ ≤ C(∥θ∥1 + ∥ξ∥+ hr) , (3.31)

with a constant C independent of h and th. If now Θh ∈ Sh is the solution of the
problem

(Θh, ϕ)−|b|(Θhx, ϕ′) = −(ξx, ϕ)+a(ξxx, ϕ
′)+
(
(Hξ+Uθ−ξθ)x, ϕ

)
+(ψ, ϕ) , ∀ϕ ∈ Sh ,

then, by (3.7), θt = Θh. Now, by Lemma 3.2 we have ∥Θ−Θh∥ ≤ Ch∥Θ∥1. Therefore,
by (2.2a), (3.28) and (3.29) we see that

∥Θh∥ ≤ ∥Θ−Θh∥+ ∥Θ∥ ≤ C(∥ξ∥1 + ∥θ∥+ hr) ,

and thus, for 0 ≤ t ≤ th

1
2
d
dt∥θ∥

2 = (θt, θ) = (Θh, θ) ≤ C(∥ξ∥21 + ∥θ∥2 + h2r) . (3.32)

In a similar manner we obtain, using (3.8), (3.30), (3.31) and (2.2a), that for 0 ≤ t ≤ th

1
2
d
dt∥ξ∥

2 ≤ C(∥θ∥21 + ∥ξ∥2 + h2r) , (3.33)

and (3.27) follows by adding (3.32) and (3.33).
The final step of the proof consists in putting ϕ = −θ in (3.7), χ = −ξ in (3.8), adding
and using periodicity to get

|b|
2
d
dt (∥θ∥

2
1 + ∥ξ∥21) =

1+|b|
2

d
dt (∥θ∥

2 + ∥ξ∥2)− (Hξ, θx) +
1
2 (Uxθ, θ) + (ξθx, θ)

+ 1
2 (Uxξ, ξ)− (ψ, θ)− (ζ, ξ) ,

for t ∈ [0, th]. Using (3.26), (3.27) and (3.5) yields

d
dt (∥θ∥

2
1 + ∥ξ∥21) ≤ C(∥θ∥21 + ∥ξ∥21 + h2r) , 0 ≤ t ≤ th ,

from which, by Gronwall’s Lemma and (3.9) we get ∥θ∥1 + ∥ξ∥1 ≤ Chr in [0, th]. We
conclude, as in Theorem 3.1, that the conclusion of Theorem 3.2 holds. �

4. Semidiscretization of the symmetric Boussinesq systems

We consider now the periodic initial-value problem on [0, 1] of the system (1.3)−(1.4),
where a = c and b, d ≥ 0, which we discretize again in space in Sh for r ≥ 3. We seek
ηh, uh ∈ C1(0, T ;Sh), so that for 0 ≤ t ≤ T :

(ηht, ϕ) + (uhx, ϕ) +
1
2

(
(ηhuh)x, ϕ

)
− a(uhxx, ϕ

′) + b(ηhtx, ϕ
′) = 0 , ∀ϕ ∈ Sh , (4.1)

(uht, χ) + (ηhx, χ) +
1
2 (ηhηhx, χ) +

3
2 (uhuhx, χ)− a(ηhxx, χ

′) + d(uhtx, χ
′) = 0 ,

∀χ ∈ Sh , (4.2)
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with ηh(0) and uh(0) taken as suitable approximations of η0, u0 in Sh. We assume
again that smooth solutions of the periodic initial-value problem for (1.3)−(1.4) exist
uniquely for 0 ≤ t ≤ T . Taking ϕ = ηh and χ = uh in (4.1), (4.2), adding, and using
periodicity, we see that the quantity

∥ηh∥2 + ∥uh∥2 + b∥ηhx∥2 + d∥uhx∥2

is a temporal invariant of the o.d.e. system (4.1)− (4.2). The proof of the following
result is entirely analogous to that of Lemma 3.1.

Lemma 4.1 Let H = Qhη, U = Qhu, and define ψ, ζ ∈ Sh so that for 0 ≤ t ≤ T

(Ht, ϕ) + (Ux, ϕ) +
1
2

(
(HU)x, ϕ

)
− a(Uxx, ϕ

′) + b(Htx, ϕ
′) = (ψ, ϕ) , ∀ϕ ∈ Sh ,

(4.3)

(Ut, χ) + (Hx, χ) +
1
2 (HHx, χ) +

3
2 (UUx, χ)− a(Hxx, χ

′) + d(Utx, χ
′) = (ζ, χ) ,

∀χ ∈ Sh . (4.4)

Then, there is a constant C, independent of h and t, such that

∥ψ(t)∥+ ∥ζ(t)∥ ≤ Chr , ∀t ∈ [0, T ] . (4.5)

The main result of this section is

Theorem 4.1 Let ηh(0) = Qhη0, uh(0) = Qhu0, and a = c, b, d ≥ 0. Then, for h
sufficiently small, the initial-value problem consisting of (4.1), (4.2), and the specified

initial values has a unique solution (ηh, uh) ∈
(
C1(0, T ;Sh)

)2
that satisfies

max
0≤t≤T

(∥η − ηh∥+ ∥u− uh∥) ≤ Chr . (4.6)

Proof : We proceed as in the proof of the analogous result in Section 3. Let θ =
Qhη − ηh, ξ = Qhu− uh. Then it follows that

(θt, ϕ) + (ξx, ϕ) +
1
2

(
(Hξ + Uθ − θξ)x, ϕ

)
− a(ξxx, ϕ

′) + b(θtx, ϕ
′) = (ψ, ϕ) , ∀ϕ ∈ Sh,

(4.7)

(ξt, χ) + (θx, χ) +
1
2

(
(Hθ)x − θθx, χ) +

3
2

(
(Uξ)x − ξξx, χ)− a(θxx, χ

′) + d(ξtx, χ
′)

= (ζ, χ) , ∀χ ∈ Sh, (4.8)

θ(0) = ξ(0) = 0. (4.9)

Putting ϕ = θ in (4.7) and χ = ξ in (4.8) and adding, using periodicity, we see that

1
2
d
dt (∥θ∥

2 + b∥θx∥2) + 1
2
d
dt (∥ξ∥

2 + d∥ξx∥2) + 1
2 (Hxθ, ξ) +

1
2 (ξxθ, θ) +

1
4 (Uxθ, θ)

(4.10)

+ 3
4 (Uxξ, ξ) = (ψ, θ) + (ζ, ξ).
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As usual, we use the fact that ∥H∥1,∞ + ∥U∥1,∞ ≤ C for 0 ≤ t ≤ T , and assume that
th ∈ [0, T ] is the maximal temporal instance for which ∥ξx∥∞ ≤ 1 for 0 ≤ t ≤ th.
Then, (4.10) and (4.5) give for 0 ≤ t ≤ th

1
2
d
dt

[
∥θ∥2 + b∥θx∥2 + ∥ξ∥2 + d∥ξx∥2

]
≤ C

(
∥θ∥2 + ∥ξ∥2 + h2r

)
.

Hence, Gronwall’s Lemma and (4.9) yield

∥θ∥2 + b∥θx∥2 + ∥ξ∥2 + d∥ξx∥2 ≤ Ch2r , 0 ≤ t ≤ th .

Arguing now as in Theorem 3.1 we obtain the desired result. �
Remarks: (i) Again, if e.g. b = 0, we may take ηh(0) as an optimal-order in L2

approximation to η0 in Sh; if d = 0 we may do the same for uh(0).
(ii) Note that the result (4.6) holds even if both dispersion coefficients b and d are
equal to zero, e.g. in the case of the symmetric KdV-KdV system with a = 1/6, [12],
[13]. In the case a = 0, the semidiscrete scheme provides an optimal-order (r can be
taken now greater or equal to 2), L2−conservative approximation in Sh of the solution
of the periodic initial-value problem for the symmetric shallow water equations

ηt + ux +
1
2 (ηu)x = 0 ,

ut + ηx +
1
2ηηx +

3
2uux = 0 ,

(4.11)

provided, of course, that a smooth solution of (4.11) exists for 0 ≤ t ≤ T .

5. Numerical examples

The semidiscrete schemes analyzed in the preceding sections may be discretized in
the temporal variable by a time-stepping method to provide full discretizations of the
periodic initial-value problem for the Boussinesq systems. In this section we show the
results of some numerical experiments that we performed for two types of systems
for which the corresponding semidiscretizations are not stiff. This permitted using an
explicit time-stepping method, and we consequently employed in all examples shown
the classical, explicit four-stage Runge-Kutta method (analyzed in [2], [5]), coupled
with cubic splines in space.

5.1. Cnoidal waves of the Bona-Smith systems

Cnoidal-wave solutions of the periodic initial-value problem for the KdV equation
are well known, cf. [25]. The existence of such solutions for the a-b-c-d Boussinesq
system (1.1)− (1.2) has been studied in [16]. In this paragraph we derive a family of
cnoidal-wave solutions in closed form for some of these systems. These exact solutions
are then used to test the accuracy of the fully discrete Galerkin scheme.

To derive the exact solutions, we follow the procedure used in [15] to construct
exact solitary waves. Assume that η(ξ), u(ξ) are travelling-wave solutions of (1.1)−
(1.2) with ξ = x− cst, such that u(ξ) = Bη(ξ). Consistency of the Boussinesq system



Galerkin Approximations of Periodic Solutions of Boussinesq Systems 25

with this type of solutions yields, [15], B2 = 2(b−c−2d)
b−a−2d , cs = 2−B2

B (provided that
b− a− 2d ̸= 0, B > 0) and that the o.d.e.

αη′ + β(η2)′ + γη′′′ = 0 , (5.1)

holds, where ′ = d/dξ and α = B(B−cs), β = B2, γ = B(aB+bcs). Integrating (5.1)
twice, looking as usual, cf. [25], for bounded solutions that oscillate between zero and
a maximum value denoted by η0, we may derive the following family of cnoidal-wave
solutions of (1.1)− (1.2):

η(ξ) = η0cn
2[λξ;m] , u(ξ) = Bη(ξ) , (5.2)

where η0 = (3−3B2+
√
9 + 6(2A− 3)B2 + 9B4)/2B2, κ =

√
9 + 6(2A− 3)B2 + 9B4

/B2, m = (η0/κ)
1/2, λ = (βκ/6γ)1/2, all quantities under the square roots and η0

assumed to be positive. These solutions have period 2
λK(m), where K(m) is the

complete elliptic integral of the first kind, given byK(m) =
∫ π/2
0

(1−m2 sin2 τ)−1/2dτ .
The solutions depend on a free parameter A, the constant of the first integration of
(5.1) with respect to ξ. Hence, given a suitable a-b-c-d system, one positive value of
cs and B is determined by this procedure and one may find a family of cnoidal waves
depending on A. As A → 0, since (κ − η0)η0 = 3A/β, we have m → 1, and the
solution (5.2) tends to a solitary-wave solution of sech2 type, cf. [15].

In the case of Bona-Smith systems, where

a = 0 , c = (2− 3θ2)/3 , b = d = (3θ2 − 1)/6 , 2/3 ≤ θ2 ≤ 1 ,

one may derive from the above formulas the family of cnoidal waves, corresponding
to the following values of the constants and provided θ2 ∈ (7/9, 1):

α = 8
3θ2−1 − 6 , β = 4

3θ2−1 − 2 , γ = 2θ2 − 4/3 ,

B =

√
2(1−θ2)
θ2−1/3 , cs =

4(θ2−2/3)√
2(1−θ2)(θ2−1/3)

,

η0 =
−(7−9θ2)+

√
(7−9θ2)2−8A(1−4θ2+3θ4)

4(1−θ2) ,

λ : =
√

βκ
6γ =

(
3
√

(7−9θ2)2−8A(1−4θ2+3θ4)

4(2−9θ2+9θ4)

)1/2
,

κ =

√
(7−9θ2)2−8A(1−4θ2+3θ4)

2(1−θ2) .

(5.3)

In Figure 1 we show profiles of the η component of these cnoidal waves (over one
period) for various values of A ∈ [0, 1/2] in the case of the Bona-Smith system for
θ2 = 9/11. These profiles were computed using the formulas (5.2) and (5.3). As A
tends to zero, the height η0 of the cnoidal wave decreases and its period increases. In
the limit A = 0 we obtain the solitary wave of sech2 type given in [17]. The speed cs
of all these waves is equal to 5

√
3/6 w 1.4434. In Figure 1 they are depicted over one
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Figure 1: Profiles of η-cnoidal waves for various
values of A; Bona-Smith system, θ2 = 9/11
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Figure 2: Evolution of an η-cnoidal wave, A =
0.5; Bona-Smith system, θ2 = 9/11

period [−L,L], where

A = 0.5 , L = 1.82390

A = 0.1 , L = 2.79656

A = 0.05 , L = 3.31353

A = 0 , L = ∞ .

Using these profiles as initial values we integrated in time the periodic initial-value
problem on [−L,L] for the Bona-Smith system with θ2 = 9/11 using our fully discrete
numerical method. Three profiles of the η component of the numerical solution in the
case A = 0.5 are shown at t = 0, 50 and 100 in Figure 2. (This simulation was done
with 240 spatial mesh intervals and a timestep ∆t = 10−2.) At T = 10 (i.e. after
about four revolutions) the amplitude of the wave η0 = 2 was conserved to 9 digits,

and so was also the Hamiltonian of the problem H :=
∫ L
−L
(
η2 + |c|η2x + (1+ η)u2

)
dx.

The speed cs was conserved to 8 digits and the shape and phase errors (see e.g.
[17] for the relevant definitions) were equal to about 0.405 × 10−8 and 0.464 × 10−8

respectively. We obtained similar results for other values of A.
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5.2. Solitary waves of Boussinesq systems of type (C3)

In this paragraph we study numerically some issues related to solitary-wave solutions
of a-b-c-d Boussinesq systems of type (C3), i.e. when b = d < 0 are such that the
homogeneous problem w + |b|w′′ = 0 on [−L,L] with periodic boundary conditions
at x = ±L has only the trivial solution, and a = c > 0. As was mentioned in
the Introduction, these systems are linearly well posed, [8], but the question of their
nonlinear local well-posedness remains open.

For values of the speed cs close to one, a local theory, [21], [20], shows that some
of these systems possess solitary-wave type solutions. In fact, for a range of values of
b and a, specifically when b < −a and the spectrum of the matrix of the linearized
solitary-wave equations of the system consists of two pairs of imaginary eigenvalues
(i.e. we are in region No. 4 of Figure 3.3 of [19]), the local theory predicts the
existence of generalized solitary waves (gsw’s) for this type of systems, just as in the
case of the KdV-KdV systems of [12] and [13]. These are travelling wave solutions
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Figure 3: Generalized solitary wave (η profile) of
the (C3) Boussinesq system with a = 1/5, b =
−1/6.
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Figure 4: Numerical solution of (C3) Boussinesq
system with a = 1/5, b = −1/6, t = 100

with a single hump that are symmetric about their crest and decay to small-amplitude
periodic structures (instead of to zero) as their spatial variable becomes large.

As an example, we constructed such gsw’s in the case of the system with a = 1
5 ,
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Figure 5: Evolution from the Gaussian η0 = 0.1 exp(−x2/5), u0 = 0; η-profiles of the
(C3) Boussinesq system with a = 1/5, b = −1/9. (a′) is a magnification of (a), and
(b′) of (b).

b = − 1
6 . For this purpose, we derived the o.d.e. system for [η, η′, u, u′]T in the

standard way, i.e. by assuming travelling wave solutions for (1.1)− (1.2), integrating
once and converting to a first-order o.d.e. system, on which we imposed periodic
boundary conditions at the endpoints of the interval [−25, 25]. Taking cs = 1.05
and as initial guess for all components of the system the function 0.2sech2x, we
employed the collocation routine bvp4c of MATLAB as in [12] to compute (with
relative tolerance less than 10−10) the η-gsw profile shown in Figure 3. As a check of its
travelling-wave property we integrated forward in time with our evolution numerical
code the periodic initial-value problem (using h = 0.01 on [−25, 25] and ∆t = h)
with initial profile (η0, u0) given by the η- and u- components of this gsw. The
wave propagated with speed cs = 1.05 with no perceptible change of shape. In
Figure 4 we show its η-profile at t = 100. During this evolution, the Hamiltonian

H =
∫ L
−L[η

2 + (1 + η)u2 − a(η2x + u2x)]dx of this problem was preserved to 9 digits.

In another series of numerical experiments we tried to study the evolution that en-
sues from a ‘heap-of-water’ initial profile of the form η0(x) = A exp(−kx2), u0(x) = 0
for such a Boussinesq system. This type of initial profile for the system with a = 1/5,
b = −1/6 produced numerical solutions that blew up soon. An apparently stable
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evolution was produced by the system with a = 1/5, b = −1/9 with a Gaussian for
η0 with A = 0.1, k = 1/5. (We took h = 0.01, ∆t = h/10 on [−150, 150].) Figure
5 shows the η-profile of the emerging solution at t = 10 and at t = 30. We ob-
serve that by t = 10 the initial profile has separated into two symmetric wavetrains
travelling to opposite directions (Figure 5(a)). Figure 5(a′) shows a magnification
of the profile in 5(a). Small oscillations radiate in front of the larger pulses as in
the case of the KdV-KdV systems, [13]. These oscillations decay in amplitude as |x|
grows. By t = 30 (Figures 5(b) and 5(b′)) these oscillations have wrapped around
the boundary due to periodicity and are interacting, apparently stabilizing in mean
amplitude. We are not sure if the leading, larger pulses of the wavetrains are (radi-
ating) generalized solitary waves that will eventually separate from their dispersive
tails; they could be linear dispersive structures due to the small size of the initial data.

Acknowledgment: D. Mitsotakis was supported by the Marie Curie Fellowship
No. PIEF-GA-2008-219399 of the European Commission.
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