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Abstract

The theory of ellipsoidal harmonics was introduced by Lamé as early as
1837 and was further developed mainly in the nineteenth and much less in the
twentieth century. The actual structure of the ellipsoidal system is quiet involved
and its analysis creates many problems both at the mathematical as well as at
the computational level. Perhaps this is the reason why biharmonic functions
in ellipsoidal coordinates are not present in the literature. In this work, we
utilize the Almansi representation theorem to introduce ellipsoidal biharmonic
functions in a natural way. Completeness of the these eigensolutions are justified
in a straightforward manner. Nevertheless, the main difficulty comes with the
orthogonality properties over the surface of any confocal ellipsoidal boundary. A
cumbersome analysis is included, that results in an algebraic system, the solution
of which expresses any intrinsically biharmonic eigensolution in terms of the
complete set of orthogonal surface ellipsoidal harmonics. Explicit calculations
for harmonics up to the fourth degree are also given.

1. Introduction

A function is called biharmonic if it is annihilated by the two successive applications of
the Laplacian. Perhaps the most important contribution in the theory of biharmonic
functions is the Almansi representation theorem [1], which states that any biharmonic
function can be written as the sum of a harmonic function plus the square of the
Euclidean distance multiplied by another harmonic function. This theorem is tailor
made for the spherical coordinate system, since the Euclidean distance is a spherical
coordinate. Nevertheless, it is still the best approach for any other coordinate system.
Therefore, we consider here the case of the ellipsoidal coordinate system, which is the
system with the appropriate fine structure that fits the needs of anisotropic behavior.
As it will be demonstrated, the main difficulty of such a program is associated with
the construction of an effective algorithm to express the second term of the Almansi
representation in terms of surface ellipsoidal harmonics. This is necessary for the
development of a useful spectral method to solve actual boundary value problems
with the biharmonic equation. This is a complicated procedure which is accomplished
through the following steps. We choose a particular ellipsoidal harmonic of degree n.
When this harmonic is multiplied by the ellipsoidal expression of the square of the
Euclidean distance we obtain an eigensolution of the biharmonic equation of degree
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n+2, which has to be represented in terms of surface harmonics of degree less or equal
to n + 2. We assume such an expansion and we develop the algebraic system that
determines the coefficients of the expansion. During this analysis we prove that, if
an ellipsoidal harmonic is generated by a Lamé function that belongs to a particular
class, then its product with the square of the distance is representable only with
harmonics that came from Lamé functions of the same class. Finally, we obtain exact
representation formulae for biharmonic functions of degree zero to four.

2. Eigensolutions of the Ellipsoidal Biharmonic Equation

The Almansi representation states that, if the function u is such that

∆2u(r) = ∆∆u(r) = 0, r ∈ Ω (1)

where ∆ is the Laplacian and Ω domain in R3, then there exist two functions u1 and
u2 such that

∆u1(r) = ∆u2(r) = 0, r ∈ Ω (2)

for which the following representation holds

u(r) = u1(r) + r2u2(r), r ∈ Ω. (3)

Using the definition of the ellipsoidal system (ρ, µ, ν) [3]

x21 =
ρ2µ2ν2

h22h
2
3

(4)

x22 =
(ρ2 − h23)(µ

2 − h23)(h
2
3 − ν2)

h21h
2
3

(5)

x23 =
(ρ2 − h22)(h

2
2 − µ2)(h22 − ν2)

h21h
2
2

. (6)

where

x21
a21

+
x22
a22

+
x23
a23

= 1, 0 < a3 < a2 < a1 <∞ (7)

is the reference ellipsoid and

h21 = a22 − a23, h22 = a21 − a23, h
2
3 = a21 − a22 (8)

are the semi-focal distances of the system, we obtain the ellipsoidal representation of
the Euclidean distance

r2 = ρ2 + µ2 + ν2 − h23 − h22. (9)

The interior harmonic eigensolutions in ellipsoidal coordinates [3], [5], [6], [2] are given
by

Emn (ρ, µ, ν) = Emn (ρ)Emn (µ)Emn (ν) = Emn (ρ)Smn (µ, ν) (10)
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where Smn (µ, ν) are the orthogonal surface ellipsoidal harmonics, introduced by Lamé
in 1837 [4]. The functions Emn are the well known Lamé functions, where n = 0, 1, 2, . . .
denotes the degree and m = 1, 2, . . . , 2n + 1 denotes the order of Emn . Since the set
of harmonics Emn forms a complete set for the space ker∆ in a bounded domain Ω,
it follows that the two harmonics u1, u2 of the Almansi representation (3) can be
expanded as

u1(r) =
∞∑
n=0

2n+1∑
m=1

Amn Emn (ρ, µ, ν) (11)

u2(r) =
∞∑
n=0

2n+1∑
m=1

Bmn Emn (ρ, µ, ν) (12)

where

Amn =
1

Emn (ρ)γmn

∮
Sa1

u1(r)S
m
n (µ, ν)dΩ(µ, ν) (13)

Bmn =
1

Emn (ρ)γmn

∮
Sa1

u2(r)S
m
n (µ, ν)dΩ(µ, ν) (14)

Sa1 denotes the boundary of the reference ellipsoid and dΩ(µ, ν) is the ellipsoidal
form of the differential solid angle element. Inserting formulae (11) and (12) in the
representation (3) we obtain

u(r) =
∞∑
n=0

2n+1∑
m=1

[Amn + (ρ2 + µ2 + ν2 − h23 − h22)B
m
n ]Emn (ρ, µ, ν)

=
∞∑
n=0

2n+1∑
m=1

[Amn E
m
n (ρ) + (ρ2 + µ2 + ν2 − h23 − h22)B

m
n E

m
n (ρ)]Smn (µ, ν)

=
∞∑
n=0

2n+1∑
m=1

[Amn +Bmn (ρ2 − h23 − h22)]E
m
n (ρ)Smn (µ, ν)

+
∞∑
n=0

2n+1∑
m=1

Bmn E
m
n (ρ)(µ2 + ν2)Smn (µ, ν). (15)

The last sum on the right hand side of (15) involves the surface functions (µ2 +
ν2)Smn (µ, ν) which are not orthogonal. Therefore, expression (15), as it stands, can
not be used to apply boundary conditions and calculate the coefficients. In order to
be able to do that we need to express each one of the functions (µ2 + ν2)Smn (µ, ν) in
terms of surface ellipsoidal harmonics of degree less or equal to n+ 1. This program
will be followed in the next section.

3. Re-Orthogonalization of Surface Harmonics

If Smn is a surface ellipsoidal harmonic generated by the Lamé function Emn , that
belongs in a certain class, then the function (µ2+ν2)Smn (µ, ν) is expandable in surface
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harmonics Smn′
′, with n′ 6 n + 2, that are generated by Lamé function of the same

class. Indeed, this is obvious for Lamé functions of class K. For the other classes L,
M and N, the same square root has to be a factor of every term of the expansion,
which then is canceled out, and we actually work identically as with the class K.

Let us assume that Emn belongs to class K and that the degree n is even. We know
[3] that for n even, there are (n/2)+1 Lamé functions of class K. Therefore, all we

need to do is to calculate the coefficients Cm,ln,2k of the expansion

(µ2 + ν2)Smn (µ, ν) =

n+2
2∑

k=0

k+1∑
l=1

Cm,ln,2kS
l
2k(µ, ν). (16)

In order to keep the symbols as simple as possible we introduce the number r = n/2,
and we eliminate the indices n and m from the coefficients. Hence, equation (16) is
written in the following expanded form

(µ2 + ν2)Smn (µ, ν) =
r+2∑
l=1

Cln+2S
l
n+2(µ, ν)

+
r+1∑
l=1

ClnS
l
n(µ, ν)

+

r∑
l=1

Cln−2S
l
n−2(µ, ν)

+ ..............

+
3∑
l=1

Cl4S
l
4(µ, ν)

+
2∑
l=1

Cl2S
l
2(µ, ν)

+ C1
0S

1
0(µ, ν). (17)

The plan we are going to follow next is to rewrite both sides of equation (17) as
polynomials in the variables µ and ν and then to equate the coefficients of the same
powers of µ and ν. That will give us a system for the determination of the unknown
coefficients Cln. To this end, we write for every k = 0, 1, 2, . . . , r+1 and l=1, 2,. . ., k+1

El2k(x) = x2k +Al2k,1x
2k−2 +Al2k,2x

2k−4 + . . .+Al2k,k−1x
2 +Al2k,k

=
k∑
j=0

Al2k,jx
2k−2j (18)

with the understanding that we always have Al2k,0 = 1. In view of (18) the left hand
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side of (17) gives

(µ2 + ν2)Smn (µ, ν) = (
r∑
i=0

Amn,iµ
n+2−2i)(

r+1∑
j=1

Amn,j−1ν
n+2−2j)

+ (

r+1∑
i=1

Amn,i−1µ
n+2−2i)(

r∑
j=0

Amn,jν
n+2−2j)

=
r∑
i=0

r∑
j=0

Amn,iA
m
n,j(µ

n+2−2iνn−2j + µn−2iνn+2−2j)

=
r∑
i=1

r∑
j=1

(Amn,iA
m
n,j−1 +Amn,i−1A

m
n,j)µ

n+2−2iνn+2−2j

+

r∑
i=0

Amn,iA
m
n,r(µ

n+2−2i + νn+2−2i)

+

r∑
i=1

Amn,0A
m
n,i−1(µ

n+2−2iνn+2 + µn+2νn+2−2i) (19)

and finally
(µ2 + ν2)Smn (µ, ν) = 2

r∑
i=1

Amn,iA
m
n,i−1µ

n+2−2iνn+2−2i

+

r−1∑
i=0

r∑
j=i+1

(Amn,iA
m
n,j−1 +Amn,i−1A

m
n,j) ·

·(µn+2−2iνn+2−2j + µn+2−2jνn+2−2i)

+
r∑
i=0

Amn,iA
m
n,r(µ

n+2−2i + νn+2−2i). (20)

Next we focus on the right hand side of equation (17), which in view of the notation
(18) can be written as

r+1∑
k=0

k+1∑
l=1

Cl2kS
l
2k(µ, ν) =

r+2∑
l=1

Cln+2[
r+1∑
i=0

Aln+2,iµ
n+2−2i][

r+1∑
j=0

Aln+2,jν
n+2−2j


+

r+1∑
l=1

Cln[

r∑
i=0

Aln,iµ
n−2i][

r∑
j=0

Aln,jν
n−2j


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+

r∑
l=1

Cln−2[

r−1∑
i=0

Aln−2,iµ
n−2−2i][

r−1∑
j=0

Aln−2,jν
n−2−2j


+ ..............

+
3∑
l=1

Cl4[
2∑
i=0

Al4,iµ
4−2i][

2∑
j=0

Al4,jν
4−2j



+
2∑
l=1

Cl2[
1∑
i=0

Al2,iµ
2−2i][

1∑
j=0

Al2,jν
2−2j


+ C1

0 . (21)

Through some algebraic manipulations, guided by the form (20), we can rewrite
formula (21) in the following form

r+1∑
k=0

k+1∑
l=1

Cl2kS
l
2k(µ, ν) = [

r+2∑
l=1

Cln+2(A
l
n+2,0)

2]µn+2νn+2

+
r+1∑
i=1

[
r+2∑
l=1

Cln+2A
l
n+2,0A

l
n+2,i](µ

n+2νn+2−2i + µn+2−2iνn+2)

+

r+1∑
i=1

r+1∑
j=1

[

r+2∑
l=1

Cln+2A
l
n+2,iA

l
n+2,j

+
r+1∑
l=1

ClnA
l
n,i−1A

l
n,j−1]µ

n+2−2iνn+2−2j

+
r+1∑
i=2

r+1∑
j=2

[
r∑
l=1

Cln−2A
l
n−2,i−2A

l
n−2,j−2]µ

n+2−2iνn+2−2j

+ ..............

+

r+1∑
i=r

r+1∑
j=r

[

2∑
l=1

Cl2A
l
2,i−rA

l
2,j−r]µ

n+2−2iνn+2−2j

+ C1
0 (22)

and finally in the form
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r+1∑
k=0

k+1∑
l=1

Cl2kS
l
2k(µ, ν)

=
r−1∑
i=0

r∑
j=i+1

[
i∑

k=0

(
r+2−k∑
l=1

Cln+2−2kA
l
n+2−2k,i−kA

l
n+2−2k,j−k)] ·

·(µn+2−2iνn+2−2j + µn+2−2jνn+2−2i)

+

r∑
i=0

[

i∑
j=0

(

r+2−j∑
l=1

Cln+2−2jA
l
n+2−2j,i−jA

l
n+2−2j,r+1−j)](µ

n+2−2i + νn+2−2i)

+
r+1∑
i=0

i∑
j=0

[

r+2−j∑
l=1

Cln+2−2j(A
l
n+2−2j,i−j)

2](µn+2−2iνn+2−2i). (23)

By equation (16) the left-hand sides of equations (20) and (23) are equal. There-
fore, the right-hand sides of these equations are also equal. Then, equating the co-
efficients of the same powers of µ and ν we arrive at the following system for the
calculation of the unknown constants Cln. For n = 0, 2, 4, 6, . . . we obtain the equa-
tions

r+2∑
l=1

Cln+2(A
l
n+2,0)

2 = 0 (24)

r+1∑
i=0

[
r+2−i∑
l=1

Cln+2−2i(A
l
n+2−2i,r+1−i)

2] = 0 (25)

j∑
i=0

[

r+2−i∑
l=1

Cln+2−2iA
l
n+2−2i,j−iA

l
n+2−2i,r+1−i] = Aln+2−2i,rA

l
n+2−2i,j (26)

for j = 0, 1, 2, . . . , r

while for n = 2, 4, 6, . . . we obtain the additional equations

j∑
i=0

[
r+2−i∑
l=1

Cln+2−2i(A
l
n+2−2i,j−i)

2] = 2Aln+2−2i,jA
l
n+2−2i,j−1

for j = 1, 2, . . . , r

(27)
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j∑
i=0

[

r+2−i∑
l=1

Cln+2−2iA
l
n+2−2i,j−iA

l
n+2−2i,k−i] = Aln+2−2i,kA

l
n+2−2i,j−1

+ Aln+2−2i,k−1A
l
n+2−2i,j (28)

for j = 0, 1, 2, . . . , r − 1

and k = j + 1, j + 2, . . . , r.

In the above equations we accept that Al−1 = 0. For a fixed even degree n, we have to

solve the system (24)-(28) to determine the constants Cln. Then expression (17) will
provide the purely biharmonic part of the solution (15) expressed in terms of surface
ellipsoidal harmonics.

A similar system for surface ellipsoidal harmonics of odd degree can be obtained
the same way. Ellipsoidal harmonics generated by Lamé functions of the other classes
are also handled identically.

4. The Leading Biharmonics

In order to illustrate the above analysis, as well as for the purpose of obtaining ready to
use ellipsoidal biharmonic eigensolutions, we implement the algorithm in this section
and the biharmonic eigenfunctions of degree less or equal to four. In order to do that
we need the explicit form of the Lamé functions of degree 0,1,2,3 and 4, which are
given in the Appendix. The notation has been simplified as much as it can be.

For n = 0, we have the expansion

(µ2 + ν2)S1
0(µ, ν) = C0S

1
0(µ, ν) + C1S

1
2(µ, ν) + C2S

2
2(µ, ν) (29)

or

µ2 + ν2 = C0 + C1(µ
2 + Λ − a21)(ν

2 + Λ − a21) + C2(µ
2 + Λ′ − a21)(ν

2 + Λ′ − a21)

= C0 + (C1 + C2)µ
2ν2 + [C1(Λ− a21) + C2(Λ

′ − a21)](µ
2 + ν2)

+ [C1(Λ− a21) + C2(Λ
′ − a21)]. (30)

Equating the coefficients of identical monomials we obtain the system

C1 + C2 = 0 (31)

C1(Λ− a21) + C2(Λ
′ − a21) = 1 (32)

C0 + C1(Λ− a21) + C2(Λ
′ − a21) = 0 (33)

which has the solution

C0 = −(Λ + Λ′) + 2a21 (34)

C1 =
1

Λ− Λ′ (35)

C2 = − 1

Λ− Λ′ . (36)

Therefore,

(µ2 + ν2)S1
0(µ, ν) =

1
Λ−Λ′ [S

1
2(µ, ν)− S2

2(µ, ν)]

+[2a21 − (Λ + Λ′)]S1
0(µ, ν) (37)
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For n = 1, m = 1, using only Lamé functions of the same class, we have

(µ2 + ν2)S1
1(µ, ν) = C0S

1
1(µ, ν) + C1S

1
3(µ, ν) + C2S

2
3(µ, ν) (38)

and working as before we obtain the expression

(µ2 + ν2)S1
1(µ, ν) =

1

Λ1 − Λ′
1

[S1
3(µ, ν)− S2

3(µ, ν)]

+[2a21 − (Λ1 + Λ′
1)]S

1
1(µ, ν). (39)

Similarly, for n = 1, m = 2, we obtain

(µ2 + ν2)S2
1(µ, ν) =

1

Λ2 − Λ′
2

[S3
3(µ, ν)− S4

3(µ, ν)]

+[2a21 − (Λ2 + Λ′
2)]S

2
1(µ, ν) (40)

and for n = 1, m = 3, we obtain

(µ2 + ν2)S3
1(µ, ν) =

1

Λ3 − Λ′
3

[S5
3(µ, ν)− S6

3(µ, ν)]

+[2a21 − (Λ3 + Λ′
3)]S

3
1(µ, ν). (41)

Note that, since we use only functions of the same class, which imply that all functions
have a common square root factor that cancels out, the relative system for all cases
above is of the same form. Only the parameters are changed. That explains the
similarity of the expansions (39)-(41) with the expansion (37).

For n = 2, m = 1, we have

(µ2 + ν2)S1
2(µ, ν) = C0S

1
0(µ, ν) + C1S

1
2(µ, ν) + C2S

2
2(µ, ν)

+ C3S
1
4(µ, ν) + C4S

2
4(µ, ν) + C5S

3
4(µ, ν) (42)

or

(µ2 + ν2)(µ2 + Λ − a21)(ν
2 + Λ − a21) =C0

+ C1(µ
2 + Λ− a21)(ν

2 + Λ− a21)

+ C2(µ
2 + Λ′ − a21)(ν

2 + Λ′ − a21)

+ C3(µ
4 + Tµ2 +R)(ν4 + Tν2 +R)

+ C4(µ
4 + T ′µ2 +R′)(ν4 + T ′ν2 +R′)

+ C5(µ
4 + T ′′µ2 +R′′)(ν4 + T ′′ν2 +R′′)

(43)

where the constants Λ,Λ′, T, T ′, T ′′, R,R′ andR′′ are specific parameters explained in
the Appendix.

Rearranging both sides of equation (43) in monomials of the same degree in µ and
ν, and equating the corresponding coefficients, we arrive at the following system for
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the unknown constants Ci, i = 0, 1, . . . , 5

C3 + C4 + C5 = 0 (44)

TC3 + T ′C4 + T ′′C5 = 1 (45)

RC3 +R′C4 +R′′C5 = Λ− a21 (46)

C1 + C2 + T 2C3 + T ′2C4 + T ′′2C5 = 2(Λ− a21) (47)

(Λ− a21)C1 + (Λ′ − a21)C2 + TRC3 + T ′R′C4 + T ′′R′′C5 = (Λ− a21)
2 (48)

C0 + (Λ− a21)
2C1 + (Λ′ − a21)

2C2 +R2C3 +R′2C4 +R′′2C5 = 0. (49)

The above system is decomposable in three subsystems. Equations (44)-(46) can be
solved to determine the constants C3, C4, C5. Then we substitute the values of C3,
C4, C5 in equations (47) and (48) and we solve the resulting system with respect to
C1, C2. Finally, substituting C1 to C5 in equation (49) we obtain the constant C0.
This way we obtain the following values of the constants

C0 = −(Λ− a21)
2C1 − (Λ′ − a21)

2C2 −R2C3 −R′2C4 −R′′2C5 (50)

C1 =
−(Λ′ − a21)K1 +K2

Λ− Λ′ (51)

C2 =
(Λ− a21)K1 −K2

Λ− Λ′ (52)

where

K1 = 2(Λ− a21)− T 2C3 − T ′2C4 − T ′′2C5 (53)

K2 = (Λ− a21)
2 − TRC3 − T ′R′C4 − T ′′R′′C5 (54)

and

Ci =
Di

D
, i = 3, 4, 5 (55)

with

D =

∣∣∣∣∣∣
1 1 1
T T ′ T ′′

R R′ R′′

∣∣∣∣∣∣ (56)

D3 =

∣∣∣∣∣∣
0 1 1
1 T ′ T ′′

Λ− a21 R′ R′′

∣∣∣∣∣∣ (57)

D4 =

∣∣∣∣∣∣
1 0 1
T 1 T ′′

R Λ− a21 R′′

∣∣∣∣∣∣ (58)

D5 =

∣∣∣∣∣∣
1 1 0
T T ′ 1
R R′ Λ− a21

∣∣∣∣∣∣ . (59)
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For n = 2, m = 2, we have the same representation as in (42), that is

(µ2 + ν2)S2
2(µ, ν) = C0S

1
0(µ, ν) + C1S

1
2(µ, ν) + C2S

2
2(µ, ν)

+ C3S
1
4(µ, ν) + C4S

2
4(µ, ν) + C5S

3
4(µ, ν) (60)

with the only difference that in the expressions of the constants Ci, i = 0, 1, . . . , 5,
given by the formulae (50)-(59), the values of Λ and Λ′ are interchanged.

For the cases n = 2 and m = 3, 4, 5, the situation is simpler, since there are
cancellations of factors that are second degree in the variables µ and ν, and the
process is similar to the case n = 0. Hence, it is straightforward to deduce the
representations

(µ2 + ν2)S3
2(µ, ν) = −(V + V ′)S3

2(µ, ν) +
1

V − V ′ [S
4
4(µ, ν)− S5

4(µ, ν)] (61)

(µ2 + ν2)S4
2(µ, ν) = −(U + U ′)S4

2(µ, ν) +
1

U − U ′ [S
6
4(µ, ν)− S7

4(µ, ν)] (62)

(µ2 + ν2)S3
2(µ, ν) = −(W +W ′)S5

2(µ, ν) +
1

W −W ′ [S
8
4(µ, ν)− S9

4(µ, ν)].(63)

It is obvious that we can keep developing expansions of this form, but the calcu-
lations become eventually very cumbersome.

5. Appendix

The variable x represents one of the ellipsoidal coordinates, ρ ∈ [h2,∞), µ ∈ [h3, h2],
ν ∈ [0, h3]. There are 2n + 1 Lamé functions of degree n. For n = 0, 1, 2, 3, 4, these
functions are :

E1
0(x) = 1.

E1
1(x) = x

E2
1(x) =

√
|x2 − h23|

E3
1(x) =

√
|x2 − h22|

E1
2(x) = x2 + Λ− a21

E2
2(x) = x2 + Λ′ − a21

E3
2(x) = x

√
|x2 − h23|

E4
2(x) = x

√
|x2 − h22|

E5
2(x) =

√
|x2 − h23|

√
|x2 − h22|

where the constants Λ andΛ′ are the roots of the equation

3∑
n=1

1

Λ− a2n
= 0
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E1
3(x) = x(x2 + Λ1 − a21)

E2
2(x) = x(x2 + Λ′

1 − a21)

E3
3(x) =

√
|x2 − h23|(x2 + Λ2 − a21)

E4
3(x) =

√
|x2 − h23|(x2 + Λ′

2 − a21)

E5
3(x) =

√
|x2 − h22|(x2 + Λ3 − a21)

E6
3(x) =

√
|x2 − h22|(x2 + Λ′

3 − a21)

E7
3(x) = x

√
|x2 − h23|

√
|x2 − h22|

where the constants Λk andΛ
′
k are the roots of the equation

3∑
n=1

1 + 2δkn
Λk − a2n

= 0, k = 1, 2, 3

E1
4(x) = x4 +

(h23 + h22)(M1 − 16)

14
x2 − h23h

2
2(M1 − 16)

7M1

E2
4(x) = x4 +

(h23 + h22)(M
′
1 − 16)

14
x2 − h23h

2
2(M

′
1 − 16)

7M ′
1

E3
4(x) = x4 +

(h23 + h22)(M
′′
1 − 16)

14
x2 − h23h

2
2(M

′′
1 − 16)

7M ′′
1

E4
4(x) = x

√
|x2 − h23|[x2 +

(h23 + h22)(M2 − 9)− 7h22
14

]

E5
4(x) = x

√
|x2 − h23|[x2 +

(h23 + h22)(M
′
2 − 9)− 7h22

14
]

E6
4(x) = x

√
|x2 − h22|[x2 +

(h23 + h22)(M3 − 9)− 7h23
14

]

E7
4(x) = x

√
|x2 − h22|[x2 +

(h23 + h22)(M
′
3 − 9)− 7h23

14
]

E8
4(x) =

√
|x2 − h23|

√
|x2 − h22|[x2 +

(h23 + h22)(M4 − 9)

14
]

E9
4(x) =

√
|x2 − h23|

√
|x2 − h22|[x2 +

(h23 + h22)(M
′
4 − 9)

14
]

where the constants M1, M
′
1, M

′′
1 are the roots of the equation

10

M1
+

4

M1 − 4
− 14

M1 − 16
=

(h23 + h22)
2

h23h
2
2
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the constants M2, M
′
2 are the roots of the equation

9
5h22 + 12h23
M2 − 1

+ 7
5h22 − 4h23
M2 − 9

= 8
(h23 + h22)

2

h22

the constants M3, M
′
3 are the roots of the equation

9
5h23 + 12h22
M3 − 1

+ 7
5h23 − 4h22
M3 − 9

= 8
(h23 + h22)

2

h23

and the constants M4, M
′
4 are the roots of the equation

1

M4 − 1
− 1

M4 − 9
=

2

7

(h23 + h22)
2

h23h
2
2

.

In order to facilitate the notation we rewrite the functions of degree 4 in the following
form, where the constants T, T ′, T ′′, R,R′, R′′, V, V ′, U, U ′,W,W ′ are obtained from
the above formulae by inspection

E1
4(x) = x4 + Tx2 +R

E2
4(x) = x4 + T ′x2 +R′

E3
4(x) = x4 + T ′′x2 +R′′

E4
4(x) = x

√
|x2 − h23|[x2 + V ]

E5
4(x) = x

√
|x2 − h23|[x2 + V ′]

E6
4(x) = x

√
|x2 − h22|[x2 + U ]

E7
4(x) = x

√
|x2 − h22|[x2 + U ′]

E8
4(x) =

√
|x2 − h23|

√
|x2 − h22|[x2 +W ]

E9
4(x) =

√
|x2 − h23|

√
|x2 − h22|[x2 +W ′].
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