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Abstract

When cancer tumour growth is considered from the continuum mechanics
point of view, the determination of the tumour’s exterior boundary demands
the solution of a differential equation or an integrodifferential equation, which
involves the nutrient concentration field. So it is of crucial importance to have
an accurate model for determining the nutrient distribution in the interior of
the tumour. The common geometrical assumption is that as a tumour grows, it
maintains a multilayer structure consisting of concentric spheres. Each layer is
occupied by cells that receive different concentration of vital nutrients which af-
fects their living status. The nutrient concentration field in the interior and the
exterior of the tumour is proved to exhibit only radial dependence and the tu-
mour’s interfaces are characterized by constant nutrient values. In this work we
focus on the implications appearing on the nutrient distribution, when we depart
from the spherical symmetry and assume ellipsoidal geometry. It is revealed that
when a multilayer confocal ellipsoidal model is considered, the regions occupied
by cells with different vitality state can no longer be distinguished by interfaces
of constant nutrient concentration, and the locus of the critical nutrient values
has to be redefined .

1. Introduction

When dealing with cancer tumour growth one is faced with many different interrelated
proceedures, such as the nutrient diffusion and uptake from the cancer cells, the cell
division, death and integration, the elastic interractions between the tumour tissue
and the healthy tissue and also the inner pressure effects, the drug diffusion and
uptake or the effect of inner produced inhibitors on the tumour’s growth. Nowadays,
new theories and approaches are developed along with a vast of experimental data.
Thus, a mathematical framework is needed more than ever, in order to cope with
such an amound of information. The development of mathematical models provide
such a framework, through which the different hypotheses cancerning the mechanisms
involved, can be evaluated.

Roughly speaking a tumour consists of cells that consume nutrients and proliferate,
resulting to a cell colony that grows invading healthy tissue. The colony growth follows
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three distinct stages. At the first stage, the tumour is less than 2mm small and all
cells enjoy an abundance of nutrient, which is diffused from the surrounding medium
and it is enough to keep the cells all alive and proliferating. As the tumour grows,
it reaches at the second stage where only the cells which are close to the exterior
boundary of the tumour receive enough nutrient to proliferate. These cells form an
exterior proliferating layer Vp, which includes a region Vq , where the cells live in a
quiescent, not proliferating phase. The quiescent layer in turn includes a necrotic
core Vn where cells do not receive enough nutrient to sustain life. This is the fully
developed stage, which eventually leads to a steady state, when the cell proliferation
balances the cell death, due to necrosis or apoptosis and then, the total volume of
the tumour remains constant. An avascular tumour, ceases its growth at this stage
and can either be surgically removed or remain harmless into the host tissue. Most
tumours though, pass to the third stage, that of angiogennesis, where biochemical
processes result to the formation of new blood vessels in the vicinity of the tumour,
targeting towards the tumour, and they eventually provide constant nutrient supply.
Therefore, the vascularized tumour enjoys no nutrient restrictions and its growth
becomes explosive.

Three main categories in mathematical modelling of the avascular tumour growth
have been developed since 1928, when the first mathematical paper was published on
the diffusion mechanism of a nutrient that is consumed by metabolic processes [1].
Most models treat the tumours from the continuum mechanics point of view, while
others consider stochastic processes, in order to take into account details of the cell-
cell interactions. Recently, hybrid models have been developed, in order to increase
the efficiency of the model. These models combine the continuum aspect for some
regions and the discrete cell discription for regions highly important in cell activity,
such as the proliferative region [2].

In the present work we focus on the continuum modelling of avascular tumour
growth, where the majority of the relative litterature deals with the spherically sym-
metric growth [3-8]. This choise is in a good agreement with experimental results
from tumours grown in vitro, having no elastic or nutrition restrictions generated by
the surrounding medium. Nevertheless, the effects of physical confinement on tumour
growth are profound in vivo and they have been considered in the last decade, both
experimentally [9,10] and analytically [11]. In order to study further the analytical
effects of an anisotropic avascular growth on the nutrient distribution in the interior
of the tumour, we make certain basic assumptions, which we list in the sequel.

The tumour is considered as an incompressible fluid, which receives nutrients by
diffusion from its surrounding. All parts of the fully developed tumour are character-
ized by the same constant of diffusion k. The tumour and its surrounding are always
in a diffusive equilibrium state. Therefore, the nutrient concentration field has to be
harmonic everywhere. Cells occupying the exterior surface of the tumour consume
nutrients at a constant rate γ and proliferate at a constant rate β.

The vitality condition of the cells is controlled by the amound of nutrient which
is available. The following critical nutrient values are considered: The surrounding of
the tumour provides nutrients at a constant concentration σ0. The minimum value of
σ which can support proliferation is denoted by σ1and it coincides with the maximum
value which provides quiescence. The minimum value of σ that can support life, is
denoted by σ2. In regions where the nutrient concentration is below that value, only
dead cells can be met.

The geometrical anisotropy is imposed on the tumour through the elastic proper-
ties of the physical means that surrounds the tumour. In particular, we consider the
tumour to be consisted of three confocal ellipsoidal regions,that preserve their shape
troughout the evolution of the tumour .

When the spherical geometry is used to model the tumour growth, the interfaces
between regions of cells with different vitability state, are characterized by constant
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nutrient concentration values. This is a consequence of the nutrient radial distribution
inside the tumour, and it is in agreement with the definition of the critical values of
the nutrient concentration, that determine the position of each cell inside the tumour.
On the other hand, in ellipsoidal growth, the interior nutrient distribution is proved
to be no longer radial. It turns out that the interfaces inside the tumour are no
longer the locus of the cells that enjoy constant nutrient concentration and thus, the
critical values alone cannot determine the position of a cell. In the present work
we examine closely the effects that the assumption of anisotropic growth has on the
nutrient distribution in the interior of the tumour.

In section 2 we formulate the problem in ellipsoidal geometry and we provide the
basic notation of the ellipsoidal coordinate system. Section 3 provides the solution
of the problem and the basics of the spectral decomposition of the Laplace operator
in ellipsoidal coordinates. Also, the corresponding problem in spherical geometry is
solved. The analogies between the spherical and the ellipsoidal results, as well as
further questions are discussed in section 4.

2. Statement of the problem

We consider the confocal ellipsoidal coordinate system (ρ, µ, ν) with foci (±h2, 0, 0),
(±h3, 0, 0), (0,±h1, 0), defined through the following formulae with respect to the
Cartesian coordinates (x1, x2, x3) of the point r = (ρ, µ, ν) [12]

x1 =
ρµν

h2h3
(1)

x2 =

√
ρ2 − h23

√
µ2 − h23

√
h23 − ν2

h1h3
(2)

x3 =

√
ρ2 − h22

√
h22 − µ2

√
h22 − ν2

h1h2
(3)

where 0 ≤ ν2 ≤ h23 ≤ µ2 ≤ h22 ≤ ρ2.
In ellipsoidal terms, the fully developed structure of an avascular tumour is defined

as follows. The necrotic region Vn corresponds to the ellipsoidal core h2 ≤ ρ < ρn ,
the quiescent layer V q corresponds to the next ellipsoidal shell ρn < ρ < ρq and the
proliferating ellipsoidal layer Vp corresponds to ρq < ρ < ρp. An exterior ellipsoidal
shell VR , where ρp < ρ < R , surrounds the tumour and models the healthy host
surrounding, which provides nutrients at a constant concentration σ0 . The boundary
interfaces are denoted by Si, and correspond to the values ρ = ρi, of the ellipsoidal
radial coordinate , for i = n, q, p,R respectively.

In all regions Vi , i = n, q, p,R the nutrient concentration σi (ρ, µ, ν) satisfies the
Laplace equation:

△ σi (r) = 0, r ∈Vi (4)

while σ1 < σp (r) < σ0 for r ∈Vp and σ2 < σq (r) < σ1 for r ∈Vq .
By applying the mass conservation law upon a cylindrical control volume on each

interface and taking the limit as the control volume vanishes, we obtain the boundary
conditions

n̂ · ∇ (σe − σp) (r) = −βγ
k
hρ (r) (5)

for r ∈ Sp,

n̂ · ∇ (σp − σq) (r) = −Sqγ
k
hρ (r) (6)
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for r ∈ Sq and for r ∈ Sn

n̂ · ∇ (σq − σn) (r) = −Snγ
k
hρ (r) (7)

where n̂ is the unit normal vector at the point r ∈ Si which is the ellipsoidal radial
unit vector ρ̂, k denotes the diffusivity constant, γ stands for the nutrient consumption
rate at the exterior surface of the tumour, Sq stands for the rate of gain in quiescent
cells per unit volume and Sn denotes the cell loss rate per unit volume, due to necrosis
or apoptosis. Since γ is the rate of nutrient mass exhaustion per unit area and also
Sn is the rate of cellular loss per unit volume, these are negative constants. Moreover,
the quantity hρ (r) represents the ellipsoidal radial metric coefficient at the point r,
defined as

hρ (r) =

√
(ρ2 − µ2) (ρ2 − ν2)

(ρ2 − h22) (ρ
2 − h23)

. (8)

For r ∈ SR we assume that

n̂ · ∇σe (r) = 0. (9)

Furthermore, continuity conditions for the nutrient concentration fields should
hold on each interface

σe (r) = σp (r) , r ∈ Sp (10)

σq (r) = σp (r) , r ∈ Sq (11)

σq (r) = σn (r) , r ∈ Sn (12)

Finally,
σe (r) = σ0, r ∈ SR. (13)

3. The nutrient concentration field

3.1. The ellipsoidal model

In order to solve the boundary value problem (4)-(13), we hereby give the basic
notation and relations of the spectral analysis of the Laplace operator in Ellipsoidal
geometry, that we use in the present work. For further analysis one can find detailed
theory and relations in [12] and [13] .

The Laplace interior eigenfunctions are the Lami products

IEmn (r) = Emn (ρ)Emn (µ)Emn (ν) (14)

and the exterior eigenfunctions are given by

IFmn (r) = (2n+ 1) Imn (ρ)Emn (ρ)Emn (µ)Emn (ν) (15)

where Imn (ρ) is the elliptic integral

Imn (ρ) =

+∞∫
ρ

dt

[Emn (t)]
2
√
(t2 − h22) (t

2 − h23)
(16)
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and Emn (x) ,for x = ρ, µ, ν, is the, regular at the origin, solution of degree n and
order m, of the Lami ordinary differential equation [12,13].

The ellipsoidal expansion of the solution of the problem (4)-(13) in each region of
the tumour reads as

σe (r) =
+∞∑
n=0

2n+1∑
m=1

[gmn + (2n+ 1)Imn (ρ)amn ] IEmn (r) (17)

for r = (ρ, µ, ν) ∈VR, i.e. ρp < ρ < R,

σp (r) =
+∞∑
n=0

2n+1∑
m=1

[bmn + (2n+ 1)Imn (ρ)cmn ] IEmn (r) (18)

for r = (ρ, µ, ν) ∈Vp, i.e. ρq < ρ < ρp,

σq (r) =
+∞∑
n=0

2n+1∑
m=1

[dmn + (2n+ 1)Imn (ρ)e]mn IEmn (r) (19)

for r = (ρ, µ, ν) ∈Vq, i.e. ρn < ρ < ρq, and

σn (r) =

+∞∑
n=0

2n+1∑
m=1

fmn IEmn (r) (20)

for r = (ρ, µ, ν) ∈Vn, i.e. h2 ≤ ρ < ρn.
In order to apply the boundary conditions (5)-(7) we note that the normal deriv-

ative on the ellipsoidal surface is given by

ρ̂ · ∇ =
1

hρ (r)

∂

∂ρ

and therefore we make use of the following ellipsoidal expansion of h2ρ (r) [11]

h2ρ (ρ, µ, ν) = u (ρ)E1
0 (µ)E

1
0 (ν) + υ (ρ)E1

2 (µ)E
1
2 (ν) + w (ρ)E2

2 (µ)E
2
2 (ν) (21)

where

u (ρ) =

(
ρ2 + Λ− a21

) (
ρ2 + Λ′ − a21

)
(ρ2 − h22) (ρ

2 − h23)
(22)

υ (ρ) =
−
(
ρ2 + Λ′ − a21

)
(Λ− Λ′) (ρ2 − h22) (ρ

2 − h23)
(23)

w (ρ) =

(
ρ2 + Λ− a21

)
(Λ− Λ′) (ρ2 − h22) (ρ

2 − h23)
(24)

and the Lami functions E1
0 (x) , E

1
2 (x) , E

2
2 (x) for x = µ, ν are

E1
0 (x) = 1, E1

2 (x) = x2 + Λ− a21, E
2
2 (x) = x2 + Λ′ − a21.
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In equations (22)-(24) the parameters Λ,Λ′, a1 refer to the reference ellipsoid
ρ = a1 of the ellipsoidal coordinate system under consideration, which in Cartesian
coordinates is given by

x21
a21

+
x22
a22

+
x23
a23

= 1

with 0 < a3 < a2 < a1 < +∞ and Λ,Λ′ are roots of the quadratic equation

3∑
i=1

1

(Λ− a2i )
= 0.

Moreover, it can be shown that, due to the confocality of the ellipsoidal boundaries,
the following equations hold true

Λ− a21 = Λp − ρ2p = Λq − ρ2q = Λn − ρ2n

and similarly

Λ′ − a21 = Λ′
p − ρ2p = Λ′

q − ρ2q = Λ′
n − ρ2n,

and

Λ− Λ′ = Λp − Λ′
p = Λq − Λ′

q = Λn − Λ′
n,

where Λi and Λ′
i are the corresponding parameters for the confocal ellipsoids

ρ = ρi, for i = p, q, n.
Applying the boundary conditions (5)-(7) and (10)-(13) in the expressions (17)-

(20) and using the expansion (21)-(24) appropriately on each boundary, we calculate
the unknown coefficients and obtain the following forms of the nutrient concentration

σe (r) = σ0+
γ

k
(βUp + SqUq + SnUn)

(
I10 (ρ,R) +

I22 (ρ,R) IE
2
2 (r)− I12 (ρ,R) IE

1
2 (r)

Λ− Λ′

)
(25)

for r = (ρ, µ, ν) ∈VR, i.e. ρp < ρ < R,

σp (r) = σ0 +
γ

k

{
βUpI

1
0 (ρp, R) + (SqUq + SnUn) I

1
0 (ρ,R)

}
−γ
k

{
βUpI

1
2 (ρp, R) + (SqUq + SnUn) I

1
2 (ρ,R)

} IE1
2 (r)

Λ− Λ′

+
γ

k

{
βUpI

2
2 (ρp, R) + (SqUq + SnUn) I

2
2 (ρ,R)

} IE2
2 (r)

Λ− Λ′ (26)

for r = (ρ, µ, ν) ∈Vp, i.e. ρq < ρ < ρp,

σq (r) = σ0 +
γ

k

{
βUpI

1
0 (ρp, R) + SqUqI

1
0 (ρq, R) + SnUnI

1
0 (ρ,R)

}
−γ
k

{
βUpI

1
2 (ρp, R) + SqUqI

1
2 (ρq, R) + SnUnI

1
2 (ρ,R)

} IE1
2 (r)

Λ− Λ′
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+
γ

k

{
βUpI

2
2 (ρp, R) + SqUqI

2
2 (ρq, R) + SnUnI

2
2 (ρ,R)

} IE2
2 (r)

Λ− Λ′ (27)

for r = (ρ, µ, ν) ∈Vq, i.e. ρn < ρ < ρq, and finally in the necrotic core the nutrient
concentration is

σn (r) = σ0 +
γ

k

{
βUpI

1
0 (ρp, R) + SqUqI

1
0 (ρq, R) + SnUnI

1
0 (ρn, R)

}

−γ
k

{
βUpI

1
2 (ρp, R) + SqUqI

1
2 (ρq, R) + SnUnI

1
2 (ρn, R)

} IE1
2 (r)

Λ− Λ′

+
γ

k

{
βUpI

2
2 (ρp, R) + SqUqI

2
2 (ρq, R) + SnUnI

2
2 (ρn, R)

} IE2
2 (r)

Λ− Λ′ (28)

for r = (ρ, µ, ν) ∈Vn, i.e. h2 ≤ ρ < ρn.
In equations (25)-(28) Ui = u (ρi), for i = n, q, p where u (ρ) is given in (8) and

Imn (x, y) = Imn (x)− Imn (y) , where Imn (x)is the elliptic integral defined in (16).

3.2. The corresponding spherical model

Following similar arguments for spherical geometry we obtain the corresponding
model. All the tumour boundaries are concentric spheres with radii 0 ≤ rn < rq <
rp < R. The formulation of the problem in spherical geometry is then given in (4)-(13)
provided that the unit normal vector on a spherical surface is the radial vector, n̂ = r̂
and that the radial metric coefficient in the spherical coordinate system is hr (r) = 1.

The solution of the problem is obtained in a straightforward manner and reads as
follows

σe (r) = σ0 +
γ

k

(
βr2p + Sqr

2
q + Snr

2
n

)(1

r
− 1

R

)
(29)

for rp ≤ r ≤ R,

σp (r) = σ0 +
γ

k

{
βr2p

(
1

rp
− 1

R

)
+
(
Sqr

2
q + Snr

2
n

)(1

r
− 1

R

)}
(30)

for rq ≤ r ≤ rp,

σq (r) = σ0 +
γ

k

{
βr2p

(
1

rp
− 1

R

)
+ Sqr

2
q

(
1

rq
− 1

R

)
+ Snr

2
n

(
1

r
− 1

R

)}
(31)

for rn ≤ r ≤ rq, and finally, in the necrotic core the nutrient concentration is
constant and equal to σn (r, θ, ϕ) = σq (rn, θ, ϕ), where (r, θ, ϕ) are the spherical co-
ordinates of the point r.
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4. Discussion

As it is shown in equations (29)-(31) the nutrient concentration profile in the spherical
model is radially symmetric and enjoys no angular dependence. Thus, the nutrient
critical values are defined as the extreme values of the real functions σi (r), i = p, q, n,
which are continuous in compact sets and increase monotonically with the distance
from the origin. Then,

σ2 = σn (rn, θ, ϕ) = min
r∈(rq,rp)

{σq (r, θ, ϕ)} (32)

and

σ1 = max
r∈(rq,rp)

σq (r, θ, ϕ) = σq (rq, θ, ϕ) = min
r∈(rp,R)

{σp (r, θ, ϕ)} . (33)

The above expressions define the “critical” manifolds for the spherical model,
which are the 2-D equidensity spherical interior boundaries of the tumour.

Turning back to the ellipsoidal model, we are interested for a similar consept
for the critical nutrient values. From the expressions (25)-(28), it is obvious that
the dependance of the nutrient concentration profile in the angular variables (µ, ν)
enters through the ellipsoidal harmonics IE1

2 (r) and IE2
2 (r). As the nutrient field is

still a function increasing with the distance from the origin, on passing from these
boundaries the nutrient values assume their “radial” critical values, which is (µ, ν)
dependent. In other words, for every (µ, ν) that defines a point on an ellipsoidal
interface, the nutrient values σ (ρ, µ, ν) are such that

max
ρ∈(h2,ρn)

{σn (ρ, µ, ν)} = σn (ρn, µ, ν) = min
ρ∈(ρq,ρp)

{σq (ρ, µ, ν)} = σ2 (µ, ν) (34)

and

max
ρ∈(ρq,ρp)

{σq (ρ, µ, ν)} = σq (ρq, µ, ν) = min
ρ∈(ρp,R)

{σp (ρ, µ, ν)} = σ1 (µ, ν) . (35)

In conclusion, when the geometrical model of the tumour departs from the spheri-
cal geometry, the interior boundaries of the tumour cannot be characterized by the
constant critical nutrient values, which is the common practice in the mathematical
modelling of avascular tumour growth. Therefore, questions are raised concerning the
equidensity manifolds of the nutrient concentration profile in ellipsoidal growth and
how do these implications of the locus of critical nutrient values affect the evolution
of the tumour. These questions are under current investigation.
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