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Abstract
In this work we use the generalized inverse in the classical Portfolio Selection

Problem, a portfolio consisting of 7 intraday exchange rates which is updated
every minute. In this case, since the variance covariance matrix is very close to
singular and numerically ill-conditioned, the problem is tackled in an efficient
way to benefit from the numerical tractability of the Moore-Penrose inverse.
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1. Introduction

The objective of this work is to present an application of the generalized inverse matrix

to Portfolio Selection Problem (Markowitz (1952) [9]). A central issue in empirical

finance with implications to portfolio selection problems is the invertibility of the

covariance matrix of returns. Consider a universe of N exchange whose returns are

distributed with mean vector µ and covariance matrix Σ. The classical problem of

portfolio selection is, as defined by Markowitz:

min
w
w′Σw

s.t. w′1 = 1
w′µ = q,

where 1 denotes a conformable vector of ones, signing we invest 100% of available cash

in the portfolio and q is the expected rate of return that is required on the portfolio.

The required rate of return is set by investors according to their preferences (see eg.

Danthine and Donaldson [5]), while negative elements of w denote short positions.

The analytical solution of this problem is given by:

ŵ =
C − qB

AC −B2
Σ−11+

qA−B

AC −B2
Σ−1µ (1)
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where A = 1′Σ−11, B = 1′Σ−1µ, C = µ′Σ−1µ.

This equation shows that optimal portfolio weights depend on the inverse of the

covariance matrix. Difficulties arise when the covariance matrix estimator is not

invertible, or numerically ill-conditioned, which means that inverting it amplifies es-

timation error tremendously. Various attempts to tackle this problem appear in the

literature; see Bengtsson and Holst [2], Buser [3], Ledoit and Wolf [7], Lefoll [8]. One

possible solution to get around this problem is to use the Moore-Penrose inverse. We

show that by replacing the inverse of the sample covariance matrix by the pseudo-

inverse into equation (1) yields well-defined portfolio weights and makes portfolio

optimization attainable.

2. Theoretical framework

Let A be a r×m real matrix. When A is singular, then its unique generalized inverse

A† (known as the Moore-Penrose inverse) is defined. Denote by Rr×m the linear

space of all r×m real matrices. The generalized inverse A† is the unique matrix that

satisfies the following four Penrose equations:

AA† = (AA†)∗, A†A = (A†A)∗, AA†A = A, A†AA† = A†,

where A∗ denotes the transpose matrix of A.

Let us consider the equation Ax = b, A ∈ Rr×m, b ∈ Rr, where A is singular. If

b /∈ R(A), then the equation has no solution. Therefore, instead of trying to solve the

equation ∥Ax−b∥ = 0, we must find a vector u that minimizes the norm ∥Ax−b∥. Note

that the vector u is unique. So, in this case we consider the equation Ax = PR(A)b,

where PR(A) is the orthogonal projection on the range of A. Standard references on

generalized inverses are the books of Ben-Israel and Greville [1], Campbell and Meyer

[4] and Groetsch [6].

The following two propositions can be found in [6]:

Proposition 2.1 Let A ∈ Rr×m and b ∈ Rr, b /∈ R(A). Then, for u ∈ Rm, the

following are equivalent:

(i) Au = PR(A)b

(ii) ∥Au− b∥ ≤∥ Ax− b∥,∀x ∈ Rm

(iii) A∗Au = A∗b

Let B = {u ∈ Rm|A∗Au = A∗b}. This set of solutions (known as the set of the

generalized solutions) is closed and convex, therefore, it has a unique vector with

minimal norm.
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Proposition 2.2 Let A ∈ Rr×m and b ∈ Rr, b /∈ R(A), and the equation Ax = b.

Then, if A† is the generalized inverse of A, we have that A†b = u, where u is the

minimal norm solution.

We shall make use of the latter property of the Moore-Penrose Inverse to minimize

the risk in portfolio selection. Under the Markowitz’s problem, the conditions for

minimizing the Lagrange equation, give the following system of equations in matrix

form:

Σw = −1

2
(λ1µ+ λ21). (2)

When the covariance matrix Σ is singular, the solution stated by Markowitz in equa-

tion (1) is no longer valid. Then, we can consider two cases:

In the case when this equation has infinite solutions, then the Moore-Penrose inverse

gives the minimum norm solution between them.

In the case when equation (2) has no solution, then we propose a solution from the

set of the generalized solutions, using the minimal norm solution among them.

In both cases from proposition 2.2, the minimum norm solution (i.e the optimal

portfolio positions) in order to minimize w′Σw is

ŵ = −1

2
(λ1Σ

†µ+ λ2Σ
†1), (3)

where λ1 and λ2 are the Lagrange multipliers. The uniqueness of the solution is due

to the uniqueness of the Moore-Penrose Inverse.

In Pappas [10] it is shown that in the case of linearly constrained optimization

of a quadratic form, like in this case, the use of the Moore-Penrose inverse gives

the minimum for all vectors x ∈ N (Σ)⊥ = R(Σ∗) = R(Σ). In other words, in the

case of a singular quadratic form the minimization takes place for all its non zero

values. In addition, when the covariance matrix is close to singular or numerically ill-

conditioned, the Moore-Penrose inverse gives much better and accurate results, while

the use of the inverse matrix fails to compute the portfolio weights. The reason for

this, is that the Moore-Penrose inverse calculation is done using the Singular Value

Decomposition (SVD) of the matrix. SVD calculation algorithms are rather stable

(i.e. error accumulates no faster than the condition number would seem to warrant),

since this method is based on unitary matrices that do not increase the norm of the

error matrix (see eg. Campbell and Meyer [4]). Moreover, no matrix inversion is

involved and therefore the use of the Moore-Penrose inverse is much more accurate

in the ill-conditioned case.

The analytical form of (3) gives the optimal portfolio weights under variance-

covariance singularity:

ŵ =
C − qB

AC −B2
Σ†1+

qA−B

AC −B2
Σ†µ (4)

where A = 1′Σ†1, B = 1′Σ†µ, C = µ′Σ†µ. Replacing these optimal weights on

the portfolio variance equation, σ2
p = ŵ′Σŵ, we obtain the Efficient Portfolio Frontier
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(EPF), that represents, in the mean-standard deviation space, the geometric location

of the optimal portfolios (in terms of minimum variance) that can be formed for each

level of required return q.

3. The dataset and the underlying problem

In this study, we consider a portfolio consisting of 7 intraday exchange rates which is

updated every minute. The exchange rates are the following: Euro/ Swiss Franc (EU-

RCHF), Euro/British Pound (EURGBP), Euro/Japanese Yen (EURJPY), Euro/US

Dollar (EURUSD), British Pound/US Dollar (GBPUSD), US Dollar/Swiss Franc (US-

DCHF) and US Dollar/Japanese Yen (USDJPY). Our data cover from 21 October

2008, time 00.00 to 22 October 2008, time 23.55, a total of 2880 intervals.

Our target is to perform portfolio optimization intertemporally every minute,

based on the available history of the last 5 minutes. That is, at every minute we

form a new portfolio, recalculating the optimal portfolio weights, based on the re-

turns observed the last 5 minutes. This pattern, although may seem rather intricate,

is not far away from the conditions pertaining in the exchange rates market. In fact

several players in these markets consider portfolios that are updated in even smaller

intervals, while remarkable changes in volumes and variances take place within mil-

liseconds. In such extreme conditions of uncertainty, the pattern of returns that are as

close as possible to the current instance is of outmost importance. Thus the hypoth-

esis to use the information incumbent in the past 5 minutes to form a new portfolio,

does not seem unreasonable.

In this case however, the determinant of the corresponding covariance matrices

(using a 5-minute interval) is very often equal to zero. We show that even when

the covariance matrix Σ is singular, the Moore-Penrose inverse can give us satisfying

results for optimal portfolio weights. In the present work, all the computations have

been performed using Matlab programming language. All the data used in this paper

are provided by Bloomberg.

4. Empirical analysis

4.1. Intertemporal Portfolio Optimization for a given rate of expected
return

In this section we perform intertemporal portfolio optimization for a given level of

expected return. That is, we start with the first 5 minutes and calculate the optimal

portfolio variance for expected return 1.1428e-4 (i.e. 0.0114%), in 1 minute basis. To

have a reasonable level of required return, this is calculated as the average of absolute

1 minute returns over all exchange rates. Note that generally the investor sets the

required return according to its preferences. Then, after calculating the optimal

weights ŵ the portfolio variance is given by ŵ′Σŵ. To perform the intertemporal
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optimization at every step we remove a minute from our data and add the next

one. In this way, we construct 2875 optimal portfolios. In many of these cases, the

variance-covariance matrix is close to singular, or singular. This can be seen from

Figure 1 where the determinant of Σ is often zero or negative.
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Figure 1: Time intervals vs the Determinant of the covariance matrix
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Figure 2: Time intervals vs the portfolio variance and expected return using the usual
Inverse Σ−1 for expected 1 minute return 0.0114%

When using the regular inverse, we cannot perform the optimization in several

instances. As can be seen in Figure 2, the produced portfolio variance is often either
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very large or even negative. Furthermore, the optimization fails to meet the level

of 0.0114% required return (red line). However, making use of the Moore-Penrose

Inverse in Figure 3, the target return is obtained while the portfolio variance takes

reasonable values. Thus, portfolio optimization is attainable.
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Figure 3: Time intervals vs the portfolio variance and expected return using the
Moore-Penrose Inverse Σ† for expected 1 minute return 0.0114%
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Figure 4: Error of equation (2) for each time interval

In addition we are examining the 2-norm error of equation (2) using the Moore-

Penrose inverse only, since the usual inverse fails to perform the optimization. In
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Figure 4, is provided the 2-norm error of equation (2) , that is, ∥ Σŵ+ 1
2 (λ1µ+λ21) ∥

for each time interval. We observe that remains in reasonable levels (i.e. maximum

value equals 6.6396e-7).

4.2. Intertemporal Efficient Portfolio Frontier

In this section we extend the analysis, where for each time interval we perform port-

folio optimization for a vector of expected returns, so as to construct the Efficient

Portfolio Frontier intertemporally. This cannot be performed when using the regular

inverse, but only the Moon-Penrose Inverse. Furthermore, this enables us to show the

applicability of the method to a more broad range of singular and close to singular

matrices.

We consider for each time instance a vector of 100 required returns (taken at equal

distances), with values from 1e − 4 up to 2e − 4 and calculate the optimal portfolio

weights for each of these cases, so as to draw the EPF. The EPF produced for the

first time interval (5 minutes) is given in Figure 5. The results produced seem logical,

since the portfolio variance increases along with the expected return.
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Figure 5: EPF for the first 5 minutes

The EPF for the first 10 time intervals, we perform the optimization, is given

in Figure 6. The more bold the graph the more recent the EPF. Again the Moore-

Penrose inverse enables us to perform all the optimizations efficiently. Finally the

evolution of the EPF for all the time intervals in our sample (2875) is given in Figure

7. The maximum 2-norm error of equation (2) considering all required returns and

time intervals equals 9.9358e-7.



304 D. Pappas, A. Petralias, K. Kiriakopoulos and G. Kaimakamis

0 1 2 3 4 5 6

x 10
−4

0

1

x 10
−4

Portfolio standard deviation

P
or

tfo
lio

 e
xp

ec
te

d 
re

tu
rn

Figure 6: EPF for the first 10 time intervals

Figure 7: Intertemporal EPF for the whole sample
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5. Concluding remarks

In this study we showed how portfolio optimization may take place when the variance-

covariance matrix is close to singular or singular. Such a case is when the portfolio is

updated in very short-time intervals and only the most recent historical information is

used. The use of the Moore-Penrose inverse enables us to acquire the optimal weights,

while satisfying the optimization constraints. This was illustrated by calculating the

optimal portfolio weights over a sample of 2875 time-intervals, while moreover the

EPF for each of these instances was constructed. Straightforward extentions of this

method are the cases we include a risk-free asset, or given the EPF try to find the

market protfolio according to the investor’s expected utility function.
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