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Borg-Levinson theorem for magnetic Schrödinger
operator

V. S. Serov

Abstract

We prove that the boundary spectral data, i.e. the Dirichlet eigenvalues and
normal derivatives of the normalized eigenfunctions at the boundary uniquely
determine the coefficients of the magnetic Schrödinger operator in the bounded
domains.
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1. Green’s function

Let Ω be a bounded domain with smooth boundary in Rn, n ≥ 2. We consider in this

domain a magnetic Schrödinger operator

Hm = −(∇+ iA⃗(x))2 + V (x)·, x ∈ Ω, (1)

where the coefficients A⃗(x) and V (x) are assumed to be real-valued. We assume also

that

A⃗(x) ∈ (Ln(Ω))n, n ≥ 3; A⃗(x) ∈ (Lp(Ω))2, 2 < p ≤ ∞, n = 2, (2)

and

V+(x) ∈ L1(Ω), n ≥ 2,

V−(x) ∈ L
n
2 (Ω), n ≥ 3; V−(x) ∈ Ls(Ω), 1 < s ≤ ∞, n = 2, (3)

where V+ = max(V, 0) and V− = min(V, 0).

It is well-known (see, for example, [13]) that under the conditions (2) and (3) for

the coefficients the following G̊arding’s inequality holds:

(Hmu, u)L2 ≥ c1∥∇u∥2L2 − c2∥u∥2L2 , (4)
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where 0 < c1 < 1, c2 > 0. This inequality allows us to define symmetric operator (1)

by the method of quadratic forms. Hm has a self-adjoint Friedrichs extension denoted

by (Hm)F with domain

D((Hm)F ) = {f(x) ∈
◦
W 1

2 (Ω) : Hmf(x) ∈ L2(Ω)},

where
◦
W 1

2 (Ω) denotes the closure of the space C∞
0 (Ω) by the norm of Sobolev space

W 1
2 (Ω). The spectrum of this extension is purely discrete, of finite multiplicity and

has an accumulation point only at the +∞:

λ1 ≤ λ2 ≤ ... ≤ λk ≤ ...→ +∞.

The corresponding orthonormal eigenfunctions {φk(x)}∞k=1 form orthonormal basis in

L2(Ω). The G̊arding’s inequality (4) allows us to conclude also that there is a positive

constant µ0 such that the operator (Hm)F + µ0I is positive. Then the diamagnetic

inequality of Barry Simon (see [12] and [2]) says that for any t ≥ 0 and any f ∈ L2(Ω)

|e−t((Hm)F+µ0I)f(x)| ≤ e−t(−∆)F |f |(x), a.e. x ∈ Ω, (5)

where (−∆)F denotes the Friedrichs self-adjoint extension of the Laplacian in L2(Ω)

with purely discrete spectrum. The operators e−t((Hm)F+µ0I) and e−t((−∆)F in (5)

can be understood via J. von Neumann spectral theorem. Even more is true in that

case. Namely, since both these operators have purely discrete spectrum they are

integral with kernels denoted by P (t, x, y) and P0(t, x, y), respectively. Since P0 is a

heat kernel maximum principle implies the following estimate:

0 ≤ P0(t, x, y) ≤
1

(
√
4πt)n

e−
|x−y|2

4t .

Thus, the inequality (5) can be rewritten as

|
∫
Ω

P (t, x, y)f(y) dy| ≤ 1

(
√
4πt)n

∫
Ω

e−
|x−y|2

4t |f(y)| dy, a.e. x ∈ Ω, (6)

where f ∈ L2(Ω). Using then the Hardy-Littlewood maximal functions from the

inequality (6) we obtain

|P (t, x, y)| ≤ 1

(
√
4πt)n

e−
|x−y|2

4t , x, y ∈ Ω. (7)

For any λ ≥ µ0, where µ0 from (5), the operator (Hm)F + λI is positive and its

inverse

((Hm)F + λI)−1 : L2(Ω) → L2(Ω) (8)

is bounded integral operator with kernel denoted by G(x, y, λ). If we use for this

integral operator the symbol Ĝ(λ) then we have

((Hm)F + λI)Ĝ(λ) = I, Ĝ(λ)((Hm)F + λI) = I, G(x, y, λ) = G(y, x, λ). (9)
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Definition 1.1 The kernel G(x, y, λ) of the integral operator Ĝ(λ) is called the

Green’s function of the operator (Hm)F + λI.

Our first result is

Theorem 1.1 Suppose that A⃗(x) and V (x) satisfy the conditions (2) and (3), re-

spectively. Then for any λ ≥ µ0 the Green’s function of the operator (Hm)F + λI

satisfies the following estimates:

|G(x, y, λ)| ≤ C|x− y|2−ne−|x−y|
√
λ, n ≥ 3, (10)

and

|G(x, y, λ)| ≤ C
(
1 + | log(|x− y|

√
λ|
)
e−|x−y|

√
λ, n = 2, (11)

where x, y ∈ Ω and C > 0 does not depend on x, y ∈ Ω and λ .

Proof. Due to J. von Neumann spectral theorem the Green’s function G(x, y, λ) can

be calculated as a Laplace transform of P (t, x, y)

G(x, y, λ) =

∞∫
0

e−tλP (t, x, y) dt. (12)

Using (7) we can easily obtain from (12) that for λ ≥ µ0

|G(x, y, λ)| ≤ (2π)−
n
2

(
|x− y|√

λ

)n−2
2

Kn−2
2

(|x− y|
√
λ), (13)

where Kν is the Macdonald function of order ν. Equation (13) and asymptotic expan-

sions of Kν(z) for z → 0 anf for z → +∞ give us estimates (10) and (11). Theorem

1.1 is proved.

We have three immediate corollaries of Theorem 1.1.

Corollary 1.1 Assume that A⃗ and V are as above and σ > n
4 , n ≥ 2. Then for any

function f(x) ∈ L2(Ω) the following inequality holds

∥((Hm)F + λI)−σf∥L∞(Ω) ≤ Cλ
n
4 −σ∥f∥L2(Ω),

where λ ≥ µ0 with µ0 as in Theorem 1.1.

Corollary 1.2 Assume that σ > n
4 , n ≥ 2. There is a constant C > 0 depending only

on Ω, such that the estimate

∞∑
k=1

|φk(x)|2

(λk + λ)2σ
≤ Cλ

n
2 −2σ

holds uniformly in x ∈ Ω and λ ≥ µ0.
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Corollary 1.3 Assume that σ > n
4 , n ≥ 2. Then the following series

∞∑
k=1

1

(λk + µ0)2σ

converges.

Remark 1.1 It can be mentioned here that the estimates (10) and (11) of the Green’s

function of the magnetic Schrödinger operator (1) are obtained in Theorem 1.1 for

very weak conditions of the coefficients of Hm. As far as we know they never appeared

in the literature for such conditions of the coefficients.

2. Dirichlet-to-Neumann map and eigenfunctions

In this chapter we assume (a bit more than in (2) and (3)) that

A⃗(x) ∈ (W 1
p (Ω))

n, V (x) ∈ Lp(Ω), (14)

for some p > n
2 , n ≥ 2.

Let λ ≥ µ0 with µ0 as in Chapter 1. Consider the following Dirichlet problem:

((Hm)F + λI)u(x) = 0, x ∈ Ω, u(x) = f(x), x ∈ ∂Ω, (15)

where the boundary function f(x) satisfies the following condition:

f(x) ∈ Btpp(∂Ω), t =
p− 1

p
, p > n, t >

n− 1

p
,

n

2
< p ≤ n, (16)

where Btpp(∂Ω) denotes Besov space on the boundary.

It is well known (see, for example, [3], Remarks on pp. 209, 241, and Corollary

9.18, p. 243) that there exists a unique solution of (15) from the spaces

u(x) ∈W 2
p,loc(Ω) ∩W

t+ 1
p

p (Ω). (17)

Thus, we may define the Dirichlet-to-Neumann map ΛA⃗,V+λ as follows

ΛA⃗,V+λf(x) :=
∂u(x)

∂ν
+ iA⃗ · νf(x), (18)

where ν is outward normal vector at the boundary ∂Ω. Conditions (14), (16) and

(17) imply that the Dirichlet-to-Neumann map (18) acts as (for fixed λ)

ΛA⃗,V+λ : Btpp(∂Ω) → Bt−1
pp (∂Ω) (19)

with t and p as in (16).

The following lemma plays the crucial role in this work.
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Lemma 2.1 Assume that A⃗1, A⃗2 and V1, V2 satisfy the conditions (14) and f satisfies

the condition (16). In addition we assume that A⃗1(x) = A⃗2(x) on the boundary ∂Ω.

Then

lim
λ→+∞

∥ΛA⃗2,V2+λ
f − ΛA⃗1,V1+λ

f∥Bδpp(∂Ω) = 0 (20)

for any 0 < δ < 1− 1
p .

Proof. Let ω(x) := u1(x)−u2(x), where uj(x), j = 1, 2, solves the problem (15) with

A⃗j , Vj , respectively. We denote the corresponding magnetic Schrödinger operators by

Hm,j . Then ω(x) solves the boundary value problem

(Hm,1 + λI)ω(x) = (Hm,2 −Hm,1)u2(x), x ∈ Ω,

ω(x) = 0, x ∈ ∂Ω.

This problem can be rewritten as

(−∆+ λI − 2iA⃗1 · ∇+Q1)ω(x) = 2i(A⃗1 − A⃗2) · ∇u2(x) +Qu2(x), x ∈ Ω,

ω(x) = 0, x ∈ ∂Ω, (21)

where the potentials Q(x) and Q1(x) are defined by

Q(x) = i∇ · (A⃗1(x)− A⃗2(x)) + (|A⃗2(x)|2 − |A⃗1(x)|2) + (V2(x)− V1(x))

and

Q1(x) = −i∇ · A⃗1(x) + |A⃗1(x)|2 + V1(x),

respectively. The conditions (14) easily imply that Q(x) and Q1(x) belong to Lp(Ω)

with p as in (14). Denote by Ĝ0(λ) the integral operator with the kernel which is the

Green’s function of −∆ + λI in Ω. Applying this operator we obtain from (21) the

following integral equation

(I +K)ω(x) = F (x), (22)

where the integral operator K and the function F are given by

K := Ĝ0(λ)(−2iA⃗1 · ∇+Q1)

and

F (x) := Ĝ0(λ)(2i(A⃗1 − A⃗2) · ∇u2 +Qu2)(x).

We consider this equation (22) in the space of functions from Sobolev space W 2
p (Ω)

which vanish at the boundary ∂Ω. Due to the assumptions (14) for the coefficients A⃗j
and Vj , j = 1, 2, and embedding (17) we may conclude that F belongs to this space

and K is compact there. Since the operator Hm,1+λI is positive for λ ≥ µ0 then the

boundary value problem

(Hm,1 + λI)ω(x) = 0, x ∈ Ω,
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ω(x) = 0, x ∈ ∂Ω

has only the trivial solution ω ≡ 0. The same is true for the homogeneous equation

corresponding to (22). By Fredholm’s alternative the operator I +K has a bounded

inverse in the indicated Sobolev space and therefore the solution ω of the equation

(22) satisfies

∥ω∥W 2
p (Ω) ≤ C∥F∥W 2

p (Ω) ≤ C
(
∥(A⃗1 − A⃗2) · ∇u2∥Lp(Ω) + ∥Qu2∥Lp(Ω)

)
. (23)

If p > n then the conditions (16) and (17), and the inequality (23) imply that

∥ω∥W 2
p (Ω) ≤ C

(
∥(A⃗1 − A⃗2)∥L∞(Ω)∥∇u2∥Lp(Ω) + ∥Q∥Lp(Ω)∥u2∥L∞(Ω)

)
≤ C

(
∥(A⃗1 − A⃗2)∥W 1

p (Ω)∥u2∥W 1
p (Ω) + ∥Q∥Lp(Ω)∥u2∥W 1

p (Ω)

)
≤ C∥u2∥W 1

p (Ω), (24)

where C depends only on the coefficients of the magnetic Schrödinger operators Hm,1

and Hm,2. If n2 < p ≤ n using Sobolev embedding theorem and by analogy with the

previous case we obtain

∥ω∥W 2
p (Ω) ≤ C

(
∥(A⃗1 − A⃗2)∥Ls(Ω)∥∇u2∥Lr(Ω) + ∥Q∥Lp(Ω)∥u2∥L∞(Ω)

)
≤ C

(
∥(A⃗1 − A⃗2)∥W 1

p (Ω)∥u2∥Wα
p (Ω) + ∥Q∥Lp(Ω)∥u2∥Wα

p (Ω)

)
≤ C∥u2∥Wα

p (Ω), (25)

where s = pn
n−p , r = n if p < n and s <∞, r > p if p = n, and α > n

p .

We apply now the result from [15](see inequality (5.46), p. 183) and obtain that

∥(−∆+ λI)ω∥Lp(Ω) ≥ Cλ∥ω∥Lp(Ω). (26)

By combining the inequalities (23)-(26) we may get the following inequality

∥ω∥Lp(Ω) ≤
C

λ
∥u2∥

W
t+ 1
p

p (Ω)
, (27)

where t is as in (16). The interpolation of (24), (25) and (27) leads us to the inequality

∥ω∥W s
p (Ω) ≤

C

λ1−
s
2
∥u2∥

W
t+ 1
p

p (Ω)
, (28)

where 0 ≤ s ≤ 2 and t is as in (16). Thus, due to (18), (28) and the conditions of this

lemma we have

∥ΛA⃗2,V2+λ
f − ΛA⃗1,V1+λ

f∥Bδpp(∂Ω) ≤ ∥∂ω
∂ν

∥Bδpp(∂Ω).

Using (28) we can estimate the latter term as follows:

∥∂ω
∂ν

∥Bδpp(∂Ω) ≤ ∥ω∥Bδ+1
pp (∂Ω) ≤ C∥ω∥

W
δ+1+ 1

p
p (Ω)

≤ C

λ
1−δ
2 − 1

2p

∥u2∥
W
t+ 1
p

p (Ω)
. (29)

Since δ < 1− 1
p taking into account the boundedness of the norm of u2 in λ we may

conclude from (29) that Lemma 2.1 is completely proved.
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We are in the position now to estimate the normalized eigenfunctions of the mag-

netic Schrödinger operator.

Lemma 2.2 Under the assumptions (14) for the coefficients A⃗ and V the orthonor-

mal eigenfunctions φk(x) satisfy the estimate

∥φk∥W s
p (Ω) ≤ C(λk + µ0)

s
2+

n
4 , (30)

where 0 ≤ s ≤ 2, p > n
2 and µ0 is as in (5).

Proof. Let λk be an eigenvalue and φk(x) corresponding orthonormal eigenfunction.

Then the inequality (5) ((6)) can be rewritten for f = φk as

e−t(λk+µ0)|φk(x)| ≤
1

(
√
4πt)n

∫
Ω

e−
|x−y|2

4t |φk(y)| dy

≤ 1

(
√
4πt)n

(∫
Rn

e−
|x−y|2

2t dy

) 1
2

=

(
1

8πt

)n
4

.

The latter inequality immediately implies

∥φk∥L∞(Ω) ≤
( e

2πn

)n
4

(λk + µ0)
n
4

and

∥φk∥Lp(Ω) ≤ C(λk + µ0)
n
4 , (31)

where 1 ≤ p ≤ ∞ and constant C > 0 depends only on n, p and V ol(Ω).

Rewriting the equation for the eigenfunctions φk(x) in the form

(−∆+ µ0I − 2iA⃗ · ∇ − i∇ · A⃗+ |A⃗|2 + V )φk(x) = (λk + µ0)φk(x), x ∈ Ω,

φk(x) = 0, x ∈ ∂Ω,

and applying the inequality (23), we obtain for any p > n
2 that

∥φk∥W 2
p (Ω) ≤ C(λk + µ0)∥φk∥Lp(Ω) ≤ C(λk + µ0)

1+n
4 . (32)

Now by interpolating (31) and (32) we may obtain (30). Thus, Lemma 2.2

is proved.

The next lemma shows us the representation for the kernel of the operator ΛA⃗,V+λ.

Lemma 2.3 For l = n+ 1 and f as in (16) we have(
d

dλ

)l (
ΛA⃗,V+λf(x)

)
=

∫
∂Ω

gl(x, y, λ)f(y) dσ(y), (33)
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where gl is defined by

gl(x, y, λ) = (−1)l+1l!
∞∑
k=1

∂φk(x)
∂ν

∂φk(y)
∂ν

(λk + λ)l+1
, (34)

λ ≥ µ0 and the right-hand side is convergent in Lp(∂Ω× ∂Ω).

Proof. Integration by parts for the problem (15) with f from (16) and λ ≥ µ0 leads

to

u(x) = −
∫
∂Ω

∂G(x, y, λ)

∂νy
f(y) dσ(y) = −

∫
∂Ω

∂G(y, x, λ)

∂νy
f(y) dσ(y), (35)

where G(x, y, λ) is the Green’s function of (Hm)F + λI defined in (8)-(10) and νy
denotes the outward normal vector in y. In our case the Green’s function is given by

G(x, y, λ) =
∞∑
k=1

φk(x)φk(y)

λk + λ
. (36)

Since u solves the problem (15)-(16) (u therefore depends on λ also) then using J.

von Neumann spectral theorem it can be easily proved by induction that(
d

dλ

)l
u(x, λ) = (−1)ll! ((Hm)F + λI)

−l
u(x, λ), l = 1, 2, .... (37)

The operator ((Hm)F + λI)
−l

is well-defined by the spectral theorem and it is the

integral operator with kernel denoted by Gl(x, y, λ)

Gl(x, y, λ) =

∞∑
k=1

φk(x)φk(y)

(λk + λ)l
.

This fact allows us to represent ((Hm)F + λI)
−l
u(x, λ) as follows

((Hm)F + λI)
−l
u(x, λ) =

∫
Ω

Gl(x, y, λ)u(y, λ) dy =
∞∑
k=1

φk(x)uk(λ)

(λk + λ)l
, (38)

where uk(λ) is given by

uk(λ) =

∫
Ω

φk(y)u(y, λ) dy.

Integration by parts in the last equality gives us

uk(λ) = − 1

λk + λ

∫
∂Ω

∂φk(y)

∂ν
f(y) dσ(y). (39)
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Combining (38) and (39) we obtain the following equality

((Hm)F + λI)
−l
u(x, λ) = −

∫
∂Ω

∞∑
k=1

φk(x)
∂φk(y)
∂νy

(λk + λ)l+1
dσ(y) (40)

which coincides for l = 0 with (35).

Since u solves the boundary value problem (15)-(16) using (18) we can obtain(
d

dλ

)l (
ΛA⃗,V+λf(x)

)
=

∂

∂ν

((
d

dλ

)l
u(x, λ)

)
.

Thus, the equalities (37) and (40) give us that (33) and (34) are formally obtained.

This lemma will be proved if we show the convergence of the series (34) in Lp(∂Ω×∂Ω).
To this end, the inequality (30) from Lemma 2.2 and Sobolev’s imbedding theorem

allow us to conclude that for any 0 < δ < 1− 1
p

∥∂φk
∂ν

∥Lp(∂Ω) ≤ C∥φk∥Bδ+1
pp (∂Ω) ≤ C∥φk∥

W
δ+1+ 1

p
p (Ω)

≤ C(λk + µ0)
1
2 (δ+1+ 1

p )+
n
4 .

By using this estimate and taking now m = n+ 1, we have

∥
∫
∂Ω

gl(x, y, λ)f(y) dσ(y)∥Lp(∂Ω) ≤ C
∞∑
k=1

∥∂φk∂ν ∥2Lp(∂Ω)

(λk + λ)n+2
∥f∥Lp′ (∂Ω)

≤ C∥f∥Btpp(∂Ω)

∞∑
k=1

1

(λk + µ0)
n
2 +1− 1

p−δ
.

Since 0 < δ < 1 − 1
p then due to Corollary 1.3 of Theorem 1.1 the latter series

converges and therefore, Lemma 2.3 is completely proved.

3. Borg-Levinson theorem

Classical one-dimensional Borg-Levinson theorem is formulated as follows: let q be

real valued potential in L∞(0, 1) and y(x, λ) solves the initial value problem

−y′′(x, λ) + q(x)y(x, λ) = λy(x, λ), y(0, λ) = 0, y′(0, λ) = 1.

Define the Dirichlet eigenvalues λk(q) by the condition

y(1, λk) = 0

and define the norming constants ck(q) by

ck(q) =

∫ 1

0

y2k(x, λk) dx.
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The result of Borg [1] and Levinson [6] is:

If for all k = 1, 2, ...

λk(q1) = λk(q2), ck(q1) = ck(q2),

then q1 = q2. It can be reformulated as follows. If for all k = 1, 2, ...

λk(q1) = λk(q2), y′k(1, λk; q1) = y′k(1, λk; q2),

then q1 = q2. Thus, the Dirichlet eigenvalues and normal derivatives of the eigen-

functions at the boundary uniquely determine a potential. We generalize the latter

formulation of Borg-Levinson theorem for multidimensional case. The first result is:

Theorem 3.1 Assume that A⃗j ∈ W 1
p (Ω) and Vj ∈ Lp(Ω), j = 1, 2, for some p >

n
2 , n ≥ 2. Assume in addition that A⃗1(x) = A⃗2(x) at the boundary ∂Ω. Assume also

that for each k = 1, 2, ...

λk(A⃗1, V1) = λk(A⃗2, V2) (41)

and
∂ϕk
∂ν

(x; A⃗1, V1) =
∂ϕk
∂ν

(x; A⃗2, V2). (42)

Then for all λ ≥ µ0

ΛA⃗1,V1+λ
= ΛA⃗2,V2+λ

. (43)

Proof. From the conditions (41), (42), and Lemma 2.3 it follows that for all λ ≥ µ0(
d

dλ

)n+1 (
ΛA⃗1,V1+λ

f(x)− ΛA⃗2,V2+λ
f(x)

)
= 0

for any f ∈ Btpp(∂Ω) and p >
n
2 . This equation reads as

ΛA⃗1,V1+λ
− ΛA⃗2,V2+λ

=
n∑
j=0

λjLj , (44)

where Lj are bounded operators from Btpp(∂Ω) to Lp(∂Ω). But Lemma 2.1 implies

that the polynomial in the right-hand side of (44) is zero. Hence, ΛA⃗1,V1+λ
= ΛA⃗2,V2+λ

for all λ ≥ µ0. Thus, Theorem 3.1 is proved.

Using now the paper of Salo [11] (see also very resent result of Päivärinta, Salo

and Uhlmann [10]) we obtain

Theorem 3.2 (Borg-Levinson) If A⃗j ∈ W 1
∞(Ω) and Vj ∈ L∞(Ω), j = 1, 2, n ≥ 3,

and all conditions of Theorem 3.1 are satisfied, then

dA⃗1 = dA⃗2, V1 = V2,

where the 2-form dA⃗ of the vector A⃗ = (a1, a2, ..., an) is defined by

dA⃗ =
n∑

j,k=1

(
∂ak
∂xj

− ∂aj
∂xk

)
dxk ∧ dxj .
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Historical remarks

The multidimensional Borg-Levinson theorem for the Schrödinger operators (A⃗ = 0)

for the first time was proved by Nachman, Sylvester and Uhlmann [7] for the potentials

V ∈ C∞(Ω). Their proof remains however valid if one assumes that V ∈ L∞(Ω). The

proof uses the convolution type estimates of the Green’s function for the Schrödinger

operator in the weighted L2−spaces. Finally, the problem is reduced to the fact

that the Dirichlet-to-Neumann map uniquely determines such potentials [14]. The

same result was obtained independently by Novikov [8]. For singular potentials V ∈
Lp(Ω), n2 < p ≤ ∞, n ≥ 2, this theorem was proved by Päivärinta and Serov [9]. For

inverse boundary spectral problems on Riemannian manifolds some related results

were proved by Kachalov, Kurylev and Lassas [4] (see also [5]). As far as we know

Borg-Levinson theorem for the magnetic Schrödinger operators is never met in the

literature.
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