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Abstract
We give a extensive account of a recent new way of applying the Dirichlet

form theory to random Poisson measures. The main application is to obtain
existence of density for the laws of random functionals of Lévy processes or
solutions of stochastic differential equations with jumps. As in the Wiener case
the Dirichlet form approach weakens significantly the regularity assumptions.
The main novelty is an explicit formula for the gradient or for the “carré du
champ” on the Poisson space called the lent particle formula because based on
adding a new particle to the system, computing the derivative of the functional
with respect to this new argument and taking back this particle before applying
the Poisson measure.

The article is expository in its first part and based on Bouleau-Denis [12] with
several new examples, applications to multiple Poisson integrals are gathered in
the last part which concerns the relation with the Fock space and some aspects
of the second quantization.

Keywords: Dirichlet form, Poisson random measure, Malliavin calculus, stochastic differ-
ential equation, Poisson functional, energy image density, Lévy processes, Lévy measure,
gradient, carré du champ.

1. Introduction and framework.

This lecture is an introduction to Dirichlet forms methods for studying regularity

of random variables yielded by Lévy processes, solutions of stochastic differential

equations driven by Poisson measures and multiple Poisson integrals. The main part

of this study has been done in collaboration with Laurent Denis.

A Dirichlet forms is a generalisation of the classical quadratic operator∫
Ω
|∇f(x)|2dx early introduced in potential theory. The concept has been devel-

opped especially by Beurling and Deny in the 1950’s as an application of Hilbert

space methods in potential theory, and by Fukushima in the 1970’s in connection

with symmetric Markov processes theory. It received recently a strong development

in infinite dimensional spaces where it appears as an alternative approach to Malliavin

calculus.
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The importance of the notion comes from the fact that if Pt is a symmetric strongly

continuous contraction semigroup on a space L2(µ) (for µ σ-finite positive measure)

with generator A, a necessary and sufficient condition that Pt be Markov is that “con-

tractions operate” on the quadratic form E [f ] = − < Af, f >L2(µ) i.e. E [φ(f)] 6 E [f ]
for φ contraction from R to R (cf [11] Chap.I prop. 3.2.1). Such a quadratic form is

called a Dirichlet form.

The case of Malliavin calculus is that of Wiener space taking for Pt the Ornstein-

Uhlenbeck semi-group. The corresponding Dirichlet form E possesses a “carré du

champ” operator, i.e. may be written E [f ] = 1
2

∫
Γ[f ]dµ where Γ is a quadratic op-

erator from the domain of E to L1(µ). This fact makes it possible the definition

of a “gradient” satisfying the chain rule and allowing a differential calculus through

stochastic expressions and stochastic differential equations (SDE) and providing in-

tegration by parts formulae which yield existence of density results (cf [29]).

Using Dirichlet forms in this framework of Wiener space improves several results

: contraction arguments show that the Picard iteration method for solving SDE’s

holds not only in L2 but still for the stronger Dirichlet norm. This gives existence

of density for solutions of SDE’s under only Lipschitz assumptions on the coefficients

(cf [10] and [11]). More generally, Dirichlet forms are easy to construct in the infinite

dimensional frameworks encountered in probability theory and this yields a theory of

errors propagation through the stochastic calculus (cf Bouleau [7]), also for numerical

analysis of PDE and SPDE (cf Scotti [42]).

As the Malliavin calculus has been extended to the case of Poisson measures and

SDE’s with jumps, either dealing with local operators acting on the size of the jumps

(Bichteler-Gravereaux-Jacod [4] Ma-Röckner[30] Léandre [26] [27] etc.) or based on

the Fock space representation of the Poisson space and finite difference operators

(Nualart-Vives [33] Picard [34] Ishikawa-Kunita [20] etc.), it is quite natural to at-

tempt extending the Dirichlet forms arguments to such cases. This has been done

first by Coquio [16] when the state space is Euclidean then by Denis [18] by a time

perturbation, see also related works of Privault [36], Albeverio-Kondratiev-Röckner

[1], Ma-Röckner [30].

We shall give a general presentation of Dirichlet forms methods for the Poisson

measures in the spirit of the first approach (Bichteler-Gravereaux-Jacod [4]) which

gives rise to a very similar situation like in Malliavin Calculus : a symmetric semi-

group on the Poisson space and a local gradient satisfying the chain rule. With respect

to preceding works in this direction we introduce a major simplification due to a new

tool the lent particle formula [12] which gives the gradient on the Poisson space by a

closed formula. Thanks to this representation we obtained with Laurent Denis sev-

eral results of existence of density [12] [13] and the method extends to C∞ results

(forthcoming paper). In this lecture I present the method and the main applications

obtained up to now and I expose new results about the regularity of multiple Poisson

integrals in connection with the Fock space representation that the Poisson space
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provides. It is organised as follows :

The functional analytic reasoning.

Dirichlet forms and non-Gaussian Malliavin calculus — Poisson random measures

— Dirichlet form on the Poisson space : the lent particle formula.

Practice of the method.

Other examples — Applications to SDE’s — A useful theorem of Paul Lévy.

Regularity results for multiple Poisson integrals.

Random Poisson measure and Fock space — Decomposition of D in chaos —

Density for (I1(g), . . . , In(g
⊗n)) — Density for (In1(f

⊗n1
1 ), . . . , Inp(f

⊗np
p )) — Other

functionals of Poisson integrals — Density of In(f).

2. The functional analytic reasoning.

Let us first introduce the fundamental notions of the theory of local Dirichlet forms.

2.1. Dirichlet forms and non-Gaussian Malliavin calculus.

Let (X,X , ν,d, γ) be a local symmetric Dirichlet structure which admits a “carré

du champ” operator. This means that (X,X , ν) is a measured space, ν is a σ-finite

positive measure and the bilinear form e[f, g] = 1
2

∫
γ[f, g] dν is a local Dirichlet form

with domain d ⊂ L2(ν) and carré du champ γ (cf Fukushima-Oshima-Takeda [19] in

the finite dimensional case and Bouleau-Hirsch [11] in a general setting). The form e

is closed in L2(ν) and the bilinear operator γ satisfies the functional calculus of class

C1 ∩ Lip:

∀f, g ∈ dn, ∀F,G of class C1∩Lip on Rn γ[F (f), G(g)] =
∑
ij

∂iF (f)∂jG(g)γ[fi, gj ].

We write always γ[f ] for γ[f, f ] and e[f ] for e[f, f ].

The space d equipped with the norm (∥.∥2L2(ν) + e[., .])
1
2 is a Hilbert space that

we will suppose separable. It is then possible to generate the quadratic differential

computations with γ by an ordinary differential calculus thanks to the fact that a

gradient exists (see Bouleau-Hirsch [11] ex.5.9 p. 242): there exist a separable Hilbert

space H and a continuous linear map D from d into L2(X, ν;H) such that

• ∀u ∈ d, ∥D[u]∥2H = γ[u].

• If F : R → R is Lipschitz then ∀u ∈ d, D[F ◦ u] = (F ′ ◦ u)Du, where F ′ is the

Lebesgue almost everywhere defined derivative of F .

• If F is C1 (continuously differentiable) and Lipschitz from Rd into R (with d ∈ N)
then

∀u = (u1, · · · , ud) ∈ dd, D[F ◦ u] =
d∑
i=1

(∂iF ◦ u)D[ui].
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In [11] Chap VII we used for H a copy of the space L2(ν), but a wide choice is possible

depending on convenience.

This differential calculus gives rise to integration by parts formulae as in classical

Malliavin calculus. For all u ∈ d and v ∈ D(a) domain of the generator a associated

with the Dirichlet structure, we have

1

2

∫
γ[u, v]dν = −

∫
ua[v]dν. (1)

The space d ∩ L∞ may be shown to be an algebra, hence if u1, u2 ∈ d ∩ L∞

1

2

∫
u2γ[u1, v]dν = −

∫
u1u2a[v]dν −

1

2

∫
u1γ[u2, v]dν (2)

Introducing now the adjoint operator δ of the gradient D, the equality with u ∈ d,

U ∈ dom δ ∫
uδUdν =

∫
⟨D[u], U⟩Hdν (3)

provides for φ Lipschitz∫
φ′(u)⟨D[u], U⟩Hdν =

∫
φ(u)δUdν. (4)

See [7] Chap V to VIII and [9] for applications of such formulae.

But the Dirichlet structures do possess pecular features allowing to show existence

of density without using integration by parts arguments. This is based on the following

important energy image density property or (EID):

For each positive integer d, we denote by B(Rd) the Borel σ-field on Rd and by

λd the Lebesgue measure on (Rd,B(Rd)). For f measurable f∗ν denotes the image of

the measure ν by f .

The Dirichlet structure (X,X , ν,d, γ) is said to satisfy (EID) if for any d and for any

Rd-valued function U whose components are in the domain of the form

U∗[(detγ[U,U
t]) · ν] ≪ λd

where det denotes the determinant.

This property is true for any local Dirichlet structure with carré du champ when

d = 1 (cf Bouleau [5] Thm 5 and Corol 6). It has been conjectured in 1986 (Bouleau-

Hirsch [10] p251) that (EID) were true for any local Dirichlet structure with carré

du champ. This has been shown for the Wiener space equipped with the Ornstein-

Uhlenbeck form and for some other structures by Bouleau-Hirsch (cf [11] Chap. II §5
and Chap. V example 2.2.4) but this conjecture being at present neither refuted nor

proved in full generality, it has to be established in every particular setting. For the

Poisson space it has been proved by A. Coquio [16] when the intensity measure is the
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Lebesgue measure on an open set and we obtained with Laurent Denis a rather gen-

eral condition ([12] Section 2 Thm 2 and Section 4) based on a criterion of Albeverio

and Röckner [2] and an argument of Song [44]. The new regularity results that are

presented here are based on the (EID) property.

Let us first explain the framework of Poisson measures and the notation of the

configuration space.

2.2. Poisson random measures.

We are given (X,X , ν) a measured space. We call it the bottom space. We assume

that ν is σ-finite, that for all x ∈ X, {x} belongs to X and that ν is continuous or

diffuse (ν({x}) = 0 ∀x).
We consider a random Poisson measure N on (X,X ) with intensity measure ν.

Such a random measure is characterized by the fact that for A ∈ X the random

variable N(A) follows a Poisson law with parameter ν(A) and N(A1), . . . , N(An) are

independent for disjoint Ai. Such an object may be constructed on the space of

countable sums of Dirac masses on (X,X ) (the configuration space), by considering

first the case where ν is bounded where the construction is explicit and then proceding

by product along a partition of (X,X ) (see e.g. [6] or [7] Chap VI §3). We denote by

(Ω,A,P) the configuration space where N is defined, A is the σ-field generated by N

and P its law. The space (Ω,A,P) is called the upper space.

The following density lemma (cf [12]) is the key of several proofs.

Lemma 1 For p ∈ [1,∞[, the set {e−N(f) : f > 0, f ∈ L1(ν) ∩ L∞(ν)} is total in

Lp(Ω,A,P) and {eiN(f) : f ∈ L1(ν) ∩ L∞(ν)} is total in Lp(Ω,A,P;C).

We set Ñ = N − ν, then the identity E[(Ñ(f))2] =
∫
f2 dν, for f ∈ L1(ν)∩L2(ν) can

be extended uniquely to f ∈ L2(ν) and this permits to define Ñ(f) for f ∈ L2(ν).

The Laplace characteristic functional is the basis of all subsequent formulae

E[eiÑ(f)] = e−
∫
(1−eif+if) dν f ∈ L2(ν). (5)

The creation and annihilation operators ε+ and ε− well-known in quantum mechanics

(see Meyer [31], Nualart-Vives [33], Picard [34] etc.) will play a central role for calculus

on the configuration space, they are defined in the following way:

∀x,w ∈ Ω, ε+x (w) = w1{x∈suppw} + (w + εx)1{x/∈suppw}
∀x,w ∈ Ω, ε−x (w) = w1{x/∈suppw} + (w − εx)1{x∈suppw}.

(6)

One can verify that for all w ∈ Ω,

ε+x (w) = w and ε−x (w) = w − εx for Nw-almost all x (7)
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and

ε+x (w) = w + εx and ε−x (w) = w for ν-almost all x (8)

We extend these operators to the functionals by setting:

ε+H(w, x) = H(ε+xw, x) and ε−H(w, x) = H(ε−x w, x).

This extension recommands to be careful with the order of composition since we have

for instance

(ε−ε+H)(x, ω) = H(x, ε+x ε
−
x ω) (= H(x, ε+x ω) = ε+H) (9)

It is important to emphasize that since ν is continuous the two measures P × ν

and PN = P(dω)N(ω)(dx) defined on the same sapce (Ω × X,A × X ) are mutually

singular. Computation needs to be careful with respect to negligible sets. The next

lemma shows that the image of P× ν by ε+ is nothing but PN whose image by ε− is

P× ν :

Lemma 2 Let H be A⊗X -measurable and non negative, then

E
∫
ε+Hdν = E

∫
HdN and E

∫
ε−HdN = E

∫
Hdν.

We will encounter also another notion, sometimes called a “marked” Poisson measure

associated with N , which needs here a rigorous construction.

We are still considering N the random Poisson measure on (X,X , ν) and we are

given an auxiliary probability space (R,R, ρ). We construct a random Poisson mea-

sure N ⊙ρ on (X×R,X ⊗R, ν×ρ) such that if N =
∑
i εxi then N ⊙ρ =

∑
i ε(xi,ri)

where (ri) is a sequence of i.i.d. random variables independent of N whose common

law is ρ.

The construction of N ⊙ ρ follows line by line the one of N . Let us recall it.

We first study the case where ν is bounded and we consider the probability space

(N,P(N), Pν(X)) × (X,X , ν
ν(X) )

N∗
, where Pν(X) denotes the Poisson law with para-

meter ν(X) and we put

N =
Y∑
i=1

εxi , (with the convention
0∑
1

= 0)

where Y, x1, · · · , xn, · · · denote the coordinates maps. We introduce the probability

space

(Ω̂, Â, P̂) = (R,R, ρ)N
∗
,

whose coordinates are denoted by r1, · · · , rn, · · · . On the probability space (N,P(N),
Pν(X))×(X,X , ν

ν(X) )
N∗×(Ω̂, Â, P̂), we define the randommeasureN⊙ρ =

∑Y
i=1 ε(xi,ri).
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It is a Poisson random measure on X × R with intensity measure ν × ρ. For f ∈
L1(ν × ρ)

Ê[
∫
X×R

fdN ⊙ ρ] =

∫
X

(

∫
R

f(x, r)dρ(r))N(dx) P− a.e. (10)

and if f ∈ L2(ν × ρ)

Ê[(
∫
X×R

fdN ⊙ ρ)2] = (

∫
X

∫
R

fdρdN)2 −
∫
X

(

∫
R

fdρ)2dN +

∫
X

∫
R

f2dρdN, (11)

where Ê stands for the expectation under the probability P̂.
If ν is σ-finite, this construction is extended by a standard product argument.

Eventually in all cases, we have constructed N on (Ω,A,P) and N ⊙ ρ on (Ω,A,P)×
(Ω̂, Â, P̂), it is a random Poisson measure on X×R with intensity measure ν×ρ, and
identities (10) and (11) generalize as follows:

Proposition 3 Let F be anA⊗X⊗Rmeasurable function such that E
∫
X×R F

2 dνdρ

and E
∫
R
(
∫
X
|F |dν)2dρ are both finite then the following relation holds

Ê[(
∫
X×R

FdN ⊙ ρ)2] = (

∫
X

∫
R

FdρdN)2 −
∫
X

(

∫
R

Fdρ)2dN +

∫
X

∫
R

F 2dρdN, (12)

in particular if F is such that
∫
Fdρ = 0 P × ν-a.e., then Ê[(

∫
X×R FdN ⊙ ρ)2] =∫

X

∫
R
F 2dρdN.

Proof. Approximating first F by a sequence of elementary functions and then intro-

ducing a partition (Bk) of subsets of X of finite ν-measure, this identity is seen to be

a consequence of (11).

Let us take the opportunity to state two formulae that we didn’t mention in our

preceding articles, and which may be useful in some context. Let F be measurable as

in Prop 3 and say 0 < F 6 1 then

Ê exp

∫
logF dN ⊙ ρ = exp

∫
(log

∫
F dρ) dN (13)

Ê
∫
F dN ⊙ ρ =

∫
(

∫
F dρ) dN (14)

whose proofs follow the same lines as the construction of N ⊙ ρ and Prop 3.

2.3. Dirichlet form on the Poisson space : the lent particle formula.

Now, after these notions related to the pure probabilistic Poisson space, we shall

assume we have on the bottom space a Dirichlet structure (X,X , ν,d, γ) as defined in

section 2.1. And we attempt to lift up this structure to the Poisson space in a natural
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manner. This may be done in several ways (see e.g. the introduction of [12]). The

method we will follow is not the simplest, we choose it because it enlightens the role

of operators ε+ and ε− in the upper gradient.

First, thanks to (5) we obtain the following relation: for all f ∈ d and all h ∈ D(a),

E
[
eiÑ(f)

(
Ñ(a[h]) +

i

2
N(γ[f, h])

)]
= 0. (15)

This relation and the explicit construction which may be done when ν is a bounded

measure (cf [6]) suggest a candidate for the generator of the upper structure.

Let us consider the space of test functions

D0 = L{eiÑ(f) with f ∈ D(a) ∩ L1(ν) et γ[f ] ∈ L2(ν)}.

and for U =
∑
p λpe

iÑ(fp) in D0, let us put

A0[U ] =
∑
p

λpe
iÑ(fp)(iÑ(a[fp])−

1

2
N(γ[fp])). (16)

The procedure to show that A0 is uniquely defined and is the generator of a Dirichlet

form satisfying the hoped properties, has two steps : first to construct an explicit

gradient, then to use Friedrichs’ property.

2.3.1. Gradients. We will suppose as in section 2.1 that the bottom structure pos-

sesses a gradient that we denote from now on (·)♭. For convenience we assume it

satisfies the following properties

• constants belong to dloc (see Bouleau-Hirsch [11] Chap. I Definition 7.1.3.)

1 ∈ dloc which implies γ[1] = 0 and 1♭ = 0. (17)

• (.)♭ is with values in the orthogonal subspace L2
0(R,R, ρ) of 1 in the space

L2(R,R, ρ). This condition is costless since for the gradient only the Hilbert structure

of H matters. From now on we denote this gradient (.)♭.

We take for candidate of the upper-gradient for F ∈ D0 the pre-gradient

F ♯ =

∫
ε−((ε+F )♭) dN ⊙ ρ.

where N ⊙ ρ is the Poisson measure N “marked” by ρ as defined in section 2.2.

Let us remark that thanks to Prop 3 and (17) we have

Ê[(
∫
X×R

ε−((ε+F )♭) dN ⊙ ρ)2] =

∫
ε−(γ(ε+F ))dN P-a.e. (18)

For f ∈ D(a) ∩ L1(m), γ[f ] ∈ L2, we have eiÑ(f) ∈ D0 and

(eiÑ(f))♯ =

∫
eiÑ(f)(if)♭ dN ⊙ ρ



The Lent Particle Method 55

what yields on D0:

Ê[F ♯G♯] =
∑
p,q

λpµqe
iÑ(fp−gq)N(γ(fp, gq)) (19)

2.3.2. Friedrichs’ argument. This enables us to show that the representation (16)

does not depend on the expression of U and that A0 is indeed a symmetric negative

operator on the dense subspace D0 of L2(P) so that Friedrichs’ argument applies (see

[11] p.4 or [7] Lemma III.28 p.48) : it can be extended to a self adjoint operator

which may be proved to generate a Dirichlet form with domain D admitting a carré

du champ Γ with a gradient extending (.)♯.

It remains only a technical point to verify: the fact that D0 be dense in L2(P).
This is not obvious because of the condition γ[f ] ∈ L2(ν) that we need in D0 in order

A0 take its values in L2(P). In [12] we called it bottom core hypothesis (BC), it is not

a real constraint in the applications. We can state (cf [12]) :

Theorem 4 The formula

∀F ∈ D, F ♯ =
∫
E×R

ε−((ε+F )♭) dN ⊙ ρ,

extends from D0 to D, it is justified by the following decomposition :

F ∈ D ε+−I7→ ε+F − F ∈ D ε−((.)♭)7→ ε−((ε+F )♭) ∈ L2
0(PN × ρ)

d(N⊙ρ)7→ F ♯ ∈ L2(P× P̂)

where each operator is continuous on the range of the preceding one and where L2
0(PN×

ρ) is the closed set of elements G in L2(PN × ρ) such that
∫
R
Gdρ = 0 PN -a.s.

Furthermore for all F ∈ D

Γ[F ] = Ê(F ♯)2 =

∫
E

ε−γ[ε+F ] dN.

This main result — that we call the lent particle formula — implies the validity of a

functional calculus for the obtained Dirichlet structure (Ω,A,P,D,Γ) on the Poisson

space that may be sketched as follows:

Let be H = Φ(F1, . . . , Fn) with Φ ∈ C1 ∩ Lip(Rn) and F = (F1, . . . , Fn) with

Fi ∈ D, we have :

a) γ[ε+H] =
∑
ij Φ

′
i(ε

+F )Φ′
j(ε

+F )γ[ε+Fi, ε
+Fj ] P× ν-a.e.

b) ε−γ[ε+H] =
∑
ij Φ

′
i(F )Φ

′
j(F )ε

−γ[ε+Fi, ε
+Fj ] PN -a.e.

c) Γ[H] =
∫
ε−γ[ε+H]dN =

∑
ij Φ

′
i(F )Φ

′
j(F )

∫
ε−γ[ε+Fi, ε

+Fj ]dN P-a.e.
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Remark 5 Let F ∈ D, by the theorem applying formula (13) to F ♯ gives

Ê expF ♯ = Ê exp

∫
ε−(ε+F )♭N ⊙ ρ = exp

∫ (
log

∫
exp ε−(ε+F )♭dρ

)
dN

= exp

∫ (
ε− log

∫
exp (ε+F )♭dρ

)
dN (20)

what may yield the characteristic function of the law of F ♯ under P × P̂ : if we put∫
exp(iuε+F )♭dρ = expΨ(u) we obtain

EÊeiuF
♯

= E exp

∫
ε−Ψ(u)dN.

2.3.3. Example 1. Let Yt be a centered Lévy process with Lévy measure σ integrating

x2 and such that a local Dirichlet structure may be constructed on R\{0} with carré du

champ γ[f ] = x2f ′2(x).With our notation (X,X , ν) = (R+×R\{0},Borelian sets, dt×
σ).

We define the gradient ♭ associated with γ by choosing ξ on the auxiliary space

(Ω̂, Â, P̂) such that
∫ 1

0
ξ(r)dr = 0 and

∫ 1

0
ξ2(r)dr = 1 and putting f ♭ = xf ′(x)ξ(r).

The operator ♭ acts as a derivation with the chain rule (φ(f))♭ = φ′(f).f ♭ (for

φ ∈ C1 ∩ Lip or even only Lipschitz).

N is the Poisson random measure associated with Y with intensity dt × σ such

that
∫ t
0
h(s) dYs =

∫
1[0,t](s)h(s)xÑ(dsdx) for h ∈ L2

loc(R+). (These hypotheses

imply 1 + ∆Ys ̸= 0 a.s.)

Let us study the existence of density for the pair (Yt, Exp(Y )t) where Exp(Y ) is

the Doléans exponential of Y .

Exp(Y )t = eYt
∏
s 6 t

(1 + ∆Ys)e
−∆Ys .

10/ We add a particle (α, y) i.e. a jump to Y at time α 6 t with size y :

ε+(α,y)(Exp(Y )t) = eYt+y
∏
s 6 t

(1 + ∆Ys)e
−∆Ys(1 + y)e−y = Exp(Y )t(1 + y).

20/ We compute γ[ε+Exp(Y )t](y) = (Exp(Y )t)
2y2.

30/ We take back the particle :

ε−γ[ε+Exp(Y )t] =
(
Exp(Y )t(1 + y)−1

)2
y2

we integrate in N and that gives the upper carré du champ operator (lent particle

formula):

Γ[Exp(Y )t] =
∫
[0,t]×R

(
Exp(Y )t(1 + y)−1

)2
y2N(dαdy)

=
∑
α 6 t

(
Exp(Y )t(1 + ∆Yα)

−1
)2

∆Y 2
α .
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By a similar computation the matrix Γ of the pair (Yt, Exp(Yt)) is given by

Γ =
∑
α 6 t

(
1 Exp(Y )t(1 + ∆Yα)

−1

Exp(Y )t(1 + ∆Yα)
−1

(
Exp(Y )t(1 + ∆Yα)

−1
)2 )∆Y 2

α .

Hence under hypotheses implying (EID) the density of the pair (Yt, Exp(Yt)) is yielded
by the condition

dim L
((

1
Exp(Y )t(1 + ∆Yα)

−1

)
α ∈ JT

)
= 2

where JT denotes the jump times of Y between 0 and t.

Making this in details we obtain

Let Y be a real Lévy process with infinite Lévy measure with density dominating

a positive continuous function ̸= 0 near 0, then the pair (Yt, Exp(Y )t) possesses a

density on R2.

2.3.4. Example 2. Let Y be a real Lévy process as in the preceding example.

Let us consider a real càdlàg process K independent of Y and put Hs = Ys +Ks.

Putting M = sups 6 tHs and computing successively (ε+M), γ[ε+M ] and applying

the lent particle formula gives

Proposition 6 If σ(R\{0}) = +∞ and if P[sups 6 tHs = H0] = 0, the random

variable sups 6 tHs possesses a density.

It follows that any real Lévy process X starting at zero and immediately entering R∗
+,

whose Lévy measure dominates a measure σ satisfying Hamza’s condition ([19] p105)

and infinite, is such that sups 6 tXs has a density.

2.3.5. Example 3. Lévy’s stochastic area. This example will show that the method

can detect densities even when both the Malliavin matrix is non invertible and the

Lévy measure is singular.

Let X(t) = (X1(t), X2(t)) be a Lévy process with values in R2 with Lévy measure

σ. We suppose that the hypotheses of the method are fulfilled, we shall explicit this

later on.

Let us consider first a general gradient on the bottom space :

f ♭ = f ′1ξ1 + f ′2ξ2

where f ′i = ∂f
∂xi

, and ξ1, ξ2 are functions defined on R2 × R which satisfy:∫
R
ξ1(·, r)ρ(dr) =

∫
R
ξ2(·, r)ρ(dr) = 0,

∫
R
ξ21(x1, x2, r)ρ(dr) = α11(x1, x2),∫

R
ξ1(x1, x2, r)ξ2(x1, x2, r)ρ(dr) = α12(x1, x2),

∫
R
ξ22(x1, x2)ρ(dr) = α22(x1, x2), so

that

γ[f ] = α11f
′2
1 + 2α12f

′
1f

′
2 + α22f

′2
2 .
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Let us consider the following vector involving Lévy’s stochastic area

V = (X1(t), X2(t),

∫ t

0

X1(s−)dX2(s)−
∫ t

0

X2(s−)dX1(s)).

We have for 0 < α < t and x = (x1, x2) ∈ R2,

ε+(α,x)V = V +(x1, x2, X1(α−)x2+x1(X2(t)−X2(α))−X2(α−)x1−x2(X1(t)−X1(α))

= V + (x1, x2, x1(X2(t)− 2X2(α))− x2(X1(t)− 2X1(α)))

because ε+V is defined P× ν×dα-a.e. and ν × dα is diffuse, so

(ε+V )♭ = (ξ1, ξ2, ξ1(X2(t)− 2X2(α))− ξ2(X1(t)− 2X1(α)))

and

γ[ε+V ] =

 α11 α12 Aα11 −Bα12

α12 α22 Aα12 −Bα22

Aα11 −Bα12 Aα12 −Bα22 A2α11 − 2ABα12 +B2α22


denoting A = (X2(t)− 2X2(α)) and B = (X1(t)− 2X1(α)).

This yields

ε−A = X2(t)−∆X2(α)− 2X2(α−) let us denote it Ã

ε−B = X1(t)−∆X1(α)− 2X1(α−) let us denote it B̃

and eventually

Γ[V ] =
∑
α 6 t

 α11(∆Xα)α12(∆Xα) Ãα11(∆Xα)− B̃α12(∆Xα)

∼ α22(∆Xα) Ãα12(∆Xα)− B̃α22(∆Xα)

∼ ∼ Ã2α11(∆Xα)− 2ÃB̃α12(∆Xα) + B̃2α22(∆Xα)


the symbol ∼ denoting the symmetry of the matrix.

Considering the case α12 = 0 let us take the Lévy measure of (X1, X2) expressed

in polar coordinates as

ν(dρ, dθ) = g(θ)dθ.1]0,1[(ρ)
dρ

ρ

with g locally bounded and such that it dominates a continuous and positive function

near 0. Then V = (X1(t), X2(t),
∫ t
0
X1(s−)dX2(s)−

∫ t
0
X2(s−)dX1(s)) has a density

(and condition (0.4) of [14] or of [34] prop1.1 are not fulfilled).

Considering now the case ξ2 = λ(x1, x2)ξ1 which applies to V = (X1(t), [X1]t,∫ t
0
X1(s−)d[X1](s)−

∫ t
0
[X1](s−)dX1(s)).

The Lévy measure of (X1, [X1]) is carried by the curve x2 = x21. We have

λ(x1, x2) = 2x1. We arrive to the sufficient condition : V has a density as soon

as the Lévy measure of X1 is infinite and satisfies hypotheses for (BC) and (EID). (cf

[12] and [13]).
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3. Practice of the method.

3.0.6. Computation with the lent particle formula. The presence of operators ε+ and

ε− in the lent particle formula (Thm 4) which exchange the mutually singular mea-

sures PN and P× ν, requires to be more careful than in the usual stochastic calculus

where all is defined P-a.s. We make some remarks and give some examples to help

the reader to become familiar with this tool.

3.0.7. The lent particle formula extends to Dloc. The space Dloc is a remarkable spe-

cific feature of local Dirichlet forms with carré du champ : the carré du champ operator

extends to functions locally – in a measurable sense – in D (cf [11] Chap I §7.1).
We denote Dloc the set of applications F : Ω 7→ R such that there exists a sequence

Ωn ∈ A such that ∪nΩn = Ω and ∃Fn ∈ D with F = Fn on Ωn.

The fact that (EID) is always true for d = 1 (cf [5]) shows that, for F ∈ Dloc, Γ[F ]
is uniquely defined and may be evaluated by Γ[Fn] on Ωn. The operator ♯ extends to

Dloc by putting F ♯ = F ♯n on Ωn. For F in Dloc, the formulae

F ♯ =

∫
ε−((ε+F )♭) dN ⊙ ρ Γ[F ] =

∫
ε−(γ[ε+F ])dN

resume a computation done on each Ωn.

3.0.8. Negligible sets. As it was recalled above at the beginning of section 3, it is

recommended to write down the negligible sets at each equality e.g.

ε+(Ñf) = Ñf + f P× ν-a.e.

ε−(Ñf) = Ñf − f PN -a.e.

ε+(eiÑfg) = eiÑfeifg P× ν-a.e.

ε−(eiÑfg) = eiÑfe−ifg PN -a.e.

Remark 7 Let us observe that if H(ω, x) = G(ω)g(x) where G is defined P-a.s. and
g ν-a.e. then H belongs necessarily to a single class PN -a.e. So that we may apply

to H both operators ε+ and ε− without ambiguity. This will be used further about

multiple Poisson integrals.

3.0.9. A simplified sufficient condition. Theorem 4 gives a method for obtaining Γ[F ]

for F ∈ D or F ∈ Dn, then with the hypotheses giving (EID) it suffices to prove

det Γ[F ] > 0 P-a.s. to assert that F has a density on Rn. Let us mention a stronger

condition which may be also useful in some applications. By the following lemma

that we leave to the reader

Lemma 8 Let Mα be random symmetric positive matrices and µ(dα) a random pos-

itive measure. Then {det
∫
Mαµ(dα) = 0} ⊂ {

∫
detMαµ(dα) = 0},
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it is enough to have
∫
det ε−(γ[ε+F ])dN > 0 P-a.s. hence enough that det ε−(γ[ε+F ])

be > 0 PN -a.e. We obtain, by lemma 2, that a sufficient condition for the density

of F is det γ[ε+F ] > 0 P × ν × dt-a.e. (or equivalently that the components of the

vector (ε+F )♭ be P× ν × dt-a.e. linearly independent in L2(ρ) ).

3.0.10. The energy image density property (EID). We gave in Bouleau-Denis [12] gen-

eral conditions on the bottom structure (X,X , ν,d, γ) to satisfy (EID) and for this

property to be lifted up to the upper space (Ω,A,P,D,Γ). Here are these conditions

in a simplified form:

Proposition 9 Suppose (X,X , ν) = (Rd,B(Rd), k(x)dx) with k continuous on an

open set of full Lebesgue measure and suppose the carré du champ operator is defined

on the test functions C∞
K infinitely differentiable with compact support by the formula∑

ij

ξij(x)∂if(x)∂jf(x) (21)

where ξ is locally bounded and locally elliptic i.e. for every compact K there are

constants CK<∞ and cK>0 such that ∀x∈K, ∀c ∈ Rd CK |c|2>
∑d
i,j=1 ξij(x)cicj>

cK |c|2, then the bilinear form

e[u, v] =
1

2

∫
Rr

∑
i,j

ξij(x)∂iu(x)∂jv(x)k(x) dx. (22)

defined on C∞
K is closable and its closure defines a Dirichlet form (e,d) with carré du

champ given by (21), and this structure satisfies (EID) and (BC).

It is useful for many examples to remark that the preceding case allows to extend

(EID) and (BC) to situations where ν is singular w.r. to Lebesgue measure.

Let (Rp\{0},B(Rp\{0}), ν,d, γ) be a Dirichlet structure on Rp\{0} satisfying

(EID). Let U : Rp\{0} 7→ Rq\{0} be an injective map (p < q) such that U ∈ dq

. Then U∗ν is σ-finite. If we put

dU = {φ ∈ L2(U∗ν) : φ ◦ U ∈ d}
eU [φ] = e[φ ◦ U ]

γU [φ] = d U∗(γ[φ◦U ].ν)
d U∗ν

then the term (Rq\{0},B(Rq\{0}), U∗ν,dU , γU ) is a Dirichlet structure satisfying

(EID). Additional regularity assumptions make U transport also property (BC).

Now it is possible to lift up (EID) from the bottom to the upper space if two

conditions are fulfilled. First to be able to share the bottom space on a partition of

sets of finite ν-measure. Second that the obtained Dirichlet structures are such that

any finite product satisfies (EID). The precise formulation is given in Bouleau-Denis

[12] Section 4. This covers all cases encountered in practice.
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3.1. Other examples.

3.1.1. Example 4. Nearest point of the origin. This example shows the quickness of

the method which has, in some sense, to be paid by the care to put on negligible sets.

Let us take for the bottom space (Rd,B(Rd), ν,d, γ) satisfying (BC), assuming

the identity map j on Rd belong to dd and γ[|j|] > 0, the measure ν being infinite,

possibly carried by a surface or a curve. Let us consider the functional H defined on

(Ω,A,P)
H(ω) = inf

x∈supp(ω)
|x|.

The inf is reached because the measure ν is σ-finite. We have

ε+xH = |x| ∧H P× ν-a.e.

We will suppose that the measure ν does not charge the level surfaces of |x| i.e. the

spheres centered at O. Then for fixed ω, x 7→ ε+xH belongs to d and we have

(ε+xH)♭ = (|j|)♭1|j| 6 H = (|j|)♭1|j|<H P× ν × ρ-a.e.

The two functionals 1|j| 6 H and 1|j|<H equal P× ν-a.e. do have the same image by

ε− PN -a.e.

1|x| 6 H(ε−x ω)
= 1|x|<H(ε−x ω)

PN -a.e.

and the lent particle formula gives

Γ[H] =

∫
γ[|j|](x)1|x| 6 H(ε−x ω)

N(ω, dx) =

∫
γ[|j|](x)1|x|<H(ε−x ω)

N(ω, dx) P-a.s.

Now this integral is easily seen to be equal to γ[|j|](x0(ω)) where x0 is the P-a.s-unique
point achieving the minimum of the distance of the support of ω to the origin. Thus

we obtain the quite natural result that as soon as ν doesn’t charge the spheres, H

possesses a density.

As in several other examples, the result could be extended to the case where ν(Rd)
be finite by conditioning by the event {N(Rd) > 1}.

3.1.2. Example 5. Gas of Brownian particles. This is an extension of the preceding

example to infinite dimensional setting. We consider a gas of Brownian particles in

R3. Each particle is independent, the initial positions are distributed in R3 along a

Poisson measure with uniform intensity. We study the lowest distance of a particle

to the origin during the time interval [0, 1].

A) Let us begin with some properties of extrema on the Wiener space. Let be given a

Brownian motion Bt = (B1
t , B

2
t , B

3
t ) starting at zero, the Wiener space being endowed

with the Ornstein-Uhlenbeck structure. We adopt — only in this paragraph A) —
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the following notation for this structure (W,W,m,D,Γ) and we use the gradient with

values in L2(Ŵ , Ŵ, m̂) where (Ŵ , Ŵ, m̂) is a copy of (W,W,m) defined by

(

∫ 1

0

f(t) · dBt)♯ =
∫ 1

0

f(t) · dB̂t ∀f = (f1, f2, f3) ∈ L2([0, 1]).

If x ∈ R3 is fixed and ̸= 0, the random variate

K(w) = inf
t∈[0,1]

|x+Bt|

is strictly positive and in D, by the argument developped by Nualart-Vives [32], using

the fact that the set of Brownian paths which reach several times the minimum is

negligible, we obtain

K♯(w, ŵ)

=
(x1 +B1

T (w)(w))B̂
1
T (w)(ŵ)+(x2 +B2

T (w)(w))B̂
2
T (w)(ŵ)+(x3 +B3

T (w)(w))B̂
3
T (w)(ŵ)

|x+BT (w)(w)|

where T (w) = inf{t ∈ [0, 1] : |x+Bt(w)| = K(w)}.
It follows that

Γ[K] = Ê[(K♯)2] = T > 0 a.s. if x ̸= 0.

B) Let us come back to our usual notation. For the bottom space we take (X,X , ν) =
(R3×W,B(R3)×W, λ3×m) where λ3 is the 3-dimensional Lebesgue measure, that we

equip with the product Dirichlet structure of the zero form on R3 and the O-U-form

on the Wiener space. The structure (X,X , ν,d, γ) is thus naturally endowed with a

gradient induced by the gradient used in part A) and that we denote now ♭ as usual,

it is with values in L2(m̂). The hypothesis (BC) is fulfilled.

We construct the upper structure (Ω,A,P,D,Γ) which describes a gas of Brownian

particles. We denote (x,w) the current point of X and we consider the functional

H(ω) = inf
t ∈ [0, 1]

(x,w) ∈ supp ω

|x+Bt(w)|.

We apply the lent particle method :

ε+(x,w)H = ( inf
t∈[0,1]

|x+Bt(w)|) ∧H

Here the measure λ3 ×m does not charge the level sets of (inft∈[0,1] |x+Bt(w)|) and
we have

(ε+H)♭ = (inft∈[0,1] |x+Bt(w)|)♭1{(inft∈[0,1] |x+Bt(w)|) 6 H}
= (inft∈[0,1] |x+Bt(w)|)♭1{(inft∈[0,1] |x+Bt(w)|)<H} P× ν × m̂-a.e.
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what gives putting η(x,w) = inft∈[0,1] |x+Bt(w)| and a = (x,w)

Γ[H] =

∫
γ[η]1{η(a) 6 H(ε−a ω)}N(ω, da)

and this is equal to γ[η] taken on the unique Brownian particle which yields the

minimum.

Since by the part A) above this quantity is strictly positive, we can conclude that

H possesses a density.

The argument extends to the case where the point taken as origin is itself moving

deterministically or as an independent diffusion process.

3.1.3. Example 6. Integral of a Lévy process. let Yt be a Lévy process with values in

Rd with our usual hypotheses that the Lévy measure σ carries a Dirichlet form such

that hold (BC) and (EID). Let us suppose in addition for simplicity that σ integrates

|x|2, that Y is centered without Brownian part and that the coordinate maps xi are

in d with γ[xi, xj ] = xixjδij .

Let be g ∈ C1 ∩ Lip from Rd into itself and let us consider the d-dimensional

functional

H =

∫ 1

0

g(Yt)dt

which writes also H =
∫ 1

0
g(
∫
1[0,t](s)y Ñ(dyds))dt if N denotes the Poisson measure

associated with (Y ). For 0 6 α 6 1

ε+(α,y)H =
∫ α
0
g(Yt)dt+

∫ 1

α
g(Ys + y)ds P× ν-a.e.

(ε+(α,y)H)♭ =
∫ 1

α
Dg(Ys + y)ds · j♭(y) P× ν × ρ-a.e.

where Dg is the Jacobian matrix of g and j the identity map on Rd. Then

ε−(ε+(α,y)H)♭ =
∫ 1

α
Dg(Ys)ds · j♭(y) PN × ρ-a.e.

Γ[H] =
∑
α 6 1

∫ 1

α
Dg(Ys)ds γ[j, j

t](∆Yα)
∫ 1

α
Dtg(Ys)ds P-a.s.

the matrix γ[j, jt](∆Yα) is the d×d-matrix whose diagonal is composed of the squares

of the jumps ((∆Y 1
α )

2, . . . , (∆Y dα )
2). If the images by the coordinate mappings of the

Lévy measure are infinite, and if the Jacobian matrix Dg is regular, then H has a

density on Rd. See [25] and [3] for related results.

3.1.4. Example 7. Generalized Ornstein-Uhlenbeck processes. Let (ξ, η) be a 2-

dimensional Lévy process starting from (0,0). The process

Xt = eξt(x+

∫ t

0

e−ξs dηs) t > 0 x ∈ R
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is a homogeneous Markov process called generalized O-U process driven by (ξ, η) (cf

[15]). It is possible to see by the classical Malliavin calculus that if (ξ, η) possesses a

Brownian part then Xt has a density. We exclude this case now and suppose that the

Lévy measure carries a Dirichlet form satisfying (BC) in order to apply the method

(without care of (EID) because Xt is one dimensional).

Let us begin by computing Γ[Xt] by the lent particle method.

Let (α, ξ, η) denote the current point of X = R+ × R× R,

ε+(α,ξ,η)ξt = ξt + ξ1α 6 t ε+(α,ξ,η)ξt− = ξt− + ξ1α<t

ε+(α,ξ,η)Xt = eξt+ξ1α 6 t

[
x+

∫
[0,t]

e−(ξs−+ξ1α<s) d(ηs + η1α 6 s)
]

(ε+Xt)
♭ = eξt+ξ1α 6 t

[
xξ♭ +

∫
[0,α]

e−(ξs−+ξ1α<s)dηsξ
♭ + e−ξs−(η♭ + ηξ♭)

]
ε−(ε+Xt)

♭ = eξt
[
xξ♭ +

∫
[0,α]

e−ξs−dηsξ
♭ + e−ξα−η♭

]
Let j be the identity map on R2, so that j♭ = (ξ♭, η♭) we obtain

Γ[Xt] = e2ξt
∫ t

0

(x+

∫
[0,α]

e−ξs−dηs e−ξα−)γ[j, jt]

(
x+

∫ α
0
e−ξs−dηs

e−ξα−

)
N(dαdξdη)

now putting V (ω, x, α, ξ, η) =

(
x+

∫ α
0
e−ξs−dηs

e−ξα−

)
this writes

Γ[Xt] = e2ξt
∑
α 6 t

V tγ[j, jt](∆ξα,∆ηα)V

the sum being taken on the jump times of the process (ξt, ηt). Starting from this

relation we discuss several cases :

1) First case det γ[j, jt] > 0.

Since (EID) does not matter Xt being real valued, the only condition is that the Lévy

measure σ of (ξt, ηt) be infinite and carry a local Dirichlet structure (R2\{(0, 0)},B(R2\
{(0, 0)}), σ,d, γ) satisfying (BC) and such that j ∈ dloc and det γ[j, jt] > 0 σ-a.e.

No necessary and sufficient condition is known for this which would extend the Hamza

condition to dimension 2, but we see by Prop 7 that this will be fulfilled as soon as σ

has a continuous density.

2) The case where ξt and ηt are independent.

The measure σ is carried by the coordinate axes, γ[j, jt](a, b) =

(
φ(a)1b=0 0

0 ψ(b)1a=0

)
and

Γ[Xt] = e2ξt
∑
α 6 t

[
(x+

∫
[0,α]

e−ξs−dηs)
2φ(∆ξα)1∆ηα=0 + e−2ξα−ψ(∆ηα)1∆ξα=0

]
.

If the Lévy measure of (ηt) is infinite and if ψ > 0 then Xt has a density.
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If the Lévy measure of (ηt) is finite, then if φ > 0 and if the Lévy measure of (ξt)

is infinite Xt has a density as soon as x+
∫
[0,α]

e−ξs−dηs does not vanish for little α

hence as soon as x ̸= 0.

In this case of independence it is also possible to use the representation in law (cf

[15] Thm 3.1)

Xt
d
= eξtx+

∫ t

0

eξs− dηs

applying the lent particle method to the right hand side. That gives a little faster the

same conclusion.

3) The case where σ is carried by a curve.

We sketch only this case which involves a parametrization. Let M be a Poisson

measure on R+ with σ-finite intensity measure m and let be given a map Φ : u 7→
(f(u), g(u)) ∈ R2\{(0, 0)} such that we obtain our Lévy process by image :

Φ∗m = σ Φ∗M = N

Φ being injective from R+ into R2\{(0, 0)} and such that lima→∞ Φ(a) = (0, 0). On

R+ we start with a Dirichlet structure (R+,B(R+),m, d̃, γ̃). We assume the identity

J ∈ d̃loc and f and g of class C1 ∩ Lip.

We have γ[j, jt] =

(
f ′2 f ′g′

f ′g′ g′2

)
γ̃[J ] and we obtain

Γ[Xt] = eξt
∫ [

f ′(a)(x+

∫ α

0

e−ξs−dηs) + g′(a)e−ξα−

]2
γ̃[J ](a)M(dαda).

Let us suppose the Lévy measure of (ξt, ηt) infinite, i.e. m infinite, and lima→∞(f ′(a),

g′(a)) exist and be equal to (v1, v2) ̸= (0, 0).

Γ[Xt] = 0 for some ω would imply v1x+ v2 = 0 what can be realized only for one

value of x. The reasoning may then be improved by considering the behaviour at the

neighborhood of another time α0.

3.1.5. Example 8. Interaction potential. Several forms of interaction potential are en-

countered in physics for an infinite system of interacting particles: exp{−β
∑
ij Ψ(Xi−

Xj)} , αβn
∏
ij g(|Xi −Xj |) or exp{

∑
ij a(Xi)a(Xj)b(|Xi −Xj |)} etc.

Let us consider the functional Φ =
∫
φ(x)φ(y)ψ(|x − y|2)N(dx)N(dy) where the

functions φ and ψ are regular, ψ(0) = 0, N being a random Poisson measure on R3.

After computing as usual ε+xΦ, (ε
+Φ)♭ and ε−(ε+Φ)♭, the lent particle theorem

gives

Γ[Φ] =

∫
V (x)tγ[j, jt]V (x) N(dx)

where j is the identity on R3 and V (x) is the column vector

V (x) =

∫ (
2φ(α)ψ(|x− α]2)∇φ(x) + 4φ(x)φ(α)ψ′(|x− α|2)(x− α)

)
N(dx).
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If the bottom structure is such that γ[j, jt] may be chosen to be the identity matrix,

we have

Γ[Φ] =

∫ ∣∣∣∣∫ F (x, y)N(dy)

∣∣∣∣2N(dx) (23)

with F = [2ψ(|x− y|2)∇φ(x) + 4φ(x)ψ′(|x− y|2)(x− y)]φ(y).

In order to study the positivity of Γ[Φ], we will use the following lemma (due to

Paul Lévy 1931) on which we will come back in the next section.

Lemma 10 Let f be measurable on the bottom space such that
∫
|f | ∧ 1 dν < +∞.

If ν{f ̸= 0} = +∞ then the law of N(f) is continuous.

That gives us the following result

Proposition 11 If F is such that (i) ∃G ∈ L1(ν) : |F (x, y)| 6 G(y), (ii) ∀y x 7→
F (x, y) is continuous, (iii) ∀x ν{F (x, .)} = +∞, then (

∫
F (x, y)N(dy) ̸= 0) P-a.s.

Proof. For ω outside a negligible set F (x, .) is bounded in modulus by an integrable

function for N(ω, dy), hence x 7→
∫
F (x, y)N(dy) is continuous by dominated conver-

gence, hence the set {x :
∫
F (x, y)N(dy) ̸= 0} is open; by the property (iii) and the

lemma this set contains a countable dense set, hence all the space. �
It follows that if the bottom structure satisfies (BC) Φ has a density.

3.2. Application to SDE’s.

Let d ∈ N∗, we consider the following SDE :

Xt = x+

∫ t

0

∫
X

c(s,Xs− , u)Ñ(ds, du) +

∫ t

0

σ(s,Xs−)dZs (24)

where x ∈ Rd, c : R+×Rd×X → Rd and σ : R+×Rd → Rd×n, Z is a semi-martingale

and Ñ a compensated Poisson measure.

The lent particle method allows to apply the machinery of Malliavin calculus faster

than usual and under a set of hypotheses that express the Lipschitz character of the

coefficient and some other regularity assumptions for the details of which we refer to

[13].

Let us emphasize that applying the method to SDE’s uses reasoning in complete

functional spaces in which may be computed and solved the stochastic differential

equations giving the ♯ of the solution. This takes full advantage of the fact that the

lent particle formula is proved not only on a set of test functions but on the space D
itself.

In [13] applications are given to McKean-Vlasov type equation driven by a Lévy

process and to stable like processes.
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3.2.1. Example 9. A regular case violating Hörmander conditions. The following SDE

driven by a two dimensional Brownian motion
X1
t = z1 +

∫ t
0
dB1

s

X2
t = z2 +

∫ t
0
2X1

sdB
1
s +

∫ t
0
dB2

s

X3
t = z3 +

∫ t
0
X1
sdB

1
s + 2

∫ t
0
dB2

s .

(25)

is degenerate and the Hörmander conditions are not fulfilled. The generator is A =
1
2 (U

2
1 +U

2
2 )+V and its adjoint A∗ = 1

2 (U
2
1 +U

2
2 )−V with U1 = ∂

∂x1
+2x1

∂
∂x2

+x1
∂
∂x3

,

U2 = ∂
∂x2

+2 ∂
∂x3

and V = − ∂
∂z2

− 1
2
∂
∂z3

. The Lie brackets of these vectors vanish and

the Lie algebra is of dimension 2: the diffusion remains on the quadric of equation
3
4x

2
1 − x2 +

1
2x3 −

3
4 t = C.

Let us now consider the same equation driven by a Lévy process :
Z1
t = z1 +

∫ t
0
dY 1

s

Z2
t = z2 +

∫ t
0
2Z1

s−dY
1
s +

∫ t
0
dY 2

s

Z3
t = z3 +

∫ t
0
Z1
s−dY

1
s + 2

∫ t
0
dY 2

s

(26)

under hypotheses on the Lévy measure such that the bottom space may be equipped

with the carré du champ operator γ[f ] = y21f
′2
1 +y22f

′2
2 satisfying (BC) and (EID). Ap-

plying the lent particle method is as usual and shows easily that if the Lévy measures

of Y 1 and Y 2 are infinite Zt has a density on R3. See [12] for details. The regularizing

property is related to the fact that equation (26) is not under the canonical form in

the sense of Kunita [23] [24]. The next example, on the contrary shows a Lévy process

in R3 living on a hyperbolic paraboloid.

3.2.2. Example 10. For α ∈ R3, let us consider the diffusion solution of

Xt = α+

∫ t

0

U1(Xs) ◦ dB1
s +

∫ t

0

U2(Xs) ◦ dB2
s

where B = (B1, B2) is a standard Brownian motion with values in R2, integrals being

in the Stratonovich sense, and vectors U1 and U2 being given by

U1(x) =

 x1x
2
3 − a0x2x3

x2x
2
3 + a0x1x3

x3(a
2
0 + x23)

 U2(x) =

 x2x
2
3 + a0x1x3

x1x
2
3 − a0x2x3

x3(a
2
0 + x23)


with a0 = α2

1 + α2
2 − α2

3.

Then the diffusion (Zt) remains on the quadric of equation

x21 + x22 − x23 = a20. (27)

Now let us consider two independent Lévy processes (Y 1
t ), (Y

2
t ) and the equation

Zt = α+

∫ t

0

U1(Zs−)dY
1
s +

∫ t

0

U2(Zs−)dY
2
s (28)
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the Markov process with jumps Z remains on the hyperbolic paraboloid (27) as seen

by applying Ito formula. This is due to the fact that the HP is a ruled manifold and

at each point of it the jumps of Z are in the direction of either generatrix crossing at

this point. Equation (28) is canonical in Kunita’s sense. Using a map from the HP to

R2 the method allows to show the density of the law of Zt w.r. to the area measure

on the HP.

3.3. A useful theorem of Paul Lévy.

It is the occasion to rectify a historical injustice about the remarkable article of Paul

Lévy “Sur les séries dont les termes sont des variables éventuelles indépendantes”

which appeared in Studia Mathematica in 1931 [28]. This article is almost never

cited up to now (today the search engins do not mention any citation of this article)

and the textbooks of K.I. Sato [41] and of J. Bertoin [3] do not quote it. One of

his theorems, that we recall below, is generally attributed to Hartman and Wintner

“On the infinitesimal generator of integral convolutions” Amer. J. Math. 64, (1942)

273-298, which was published ten years later.

Paul Lévy’s results1 may be stated as follows:

Theorem 12 Let Xn be a sequence of independent real random variables such that

the series
∑
Xn converges almost surely.

a) If for any sequence of constants (an),
∑

P{Xn ̸= an} diverges,
∑
Xn has a

continuous law.

b) If there is a sequence (an) s.t.
∑

P{Xn ̸= an} converges and if the lower bound

of the total mass of the discrete part of the laws of the Xn’s is zero, then the law of∑
Xn is continuous.

It follows from this theorem that any process with independent increments whose

Lévy measure in infinite has a continuous law. In the framework of random Poisson

measures it gives easily Lemma 10 above.

Remark 13 If f ∈ L1(ν) and ν{f ̸= 0} = +∞ then the law of N(f) is continuous

but its characteristic function does not necessarily tend to zero at infinity, in other

words is not necessarily a Rajchman measure (cf [37] [38] or [8]) . This gives an easy

way to construct continuous measures which are not Rajchman. Let m = f∗ν, m is

σ-finite and integrates x 7→ |x|. Since EeiuNf = e
∫
(eiuf−1+iuf)dν the law of Nf is

Rajchman iff lim|u|→+∞
∫
(1− cosux)m(dx) = +∞. If we choose a step function for

f so that m =
∑
ε 1

2n
, we have

∫
(1 − cos 2kπx)m(dx) =

∑∞
j=0(1 − cos π

2j ) < +∞ so

that the law of Nf is continuous and not Rajchman.

1There is an obvious misprint in this paper p128 line 20 where = has to be change into ̸=.
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4. Regularity results for multiple Poisson integrals.

Let us first recall some links of our study with the Fock space.

4.1. Random Poisson measure and Fock space.

We recall that ν is continuous (i.e. diffuse). Let us call simple the measurable func-

tions f defined on (Xm,X⊗m) which are symmetric, finite sums of weighted indicator

functions of sets of the form A1 × · · · ×Am with disjoint Ai’s.

On simple functions if we define

Im(f) =

∫
Xm

f(x1, . . . , xm)Ñ(dx1) · · · Ñ(dxm)

it is easily seen that

E[Im(f)In(g)] = δm,nn!⟨f, g⟩L2(Xm,X⊗m,ν×m).

Thanks to this equality Im(f) may be extended to f ∈ L2(Xm,X⊗m, ν×m) so that

denoting f̃ the symmetrized f , Im(f) = Im(f̃) and

E[Im(f)In(g)] = δm,nn!⟨f̃ , g̃⟩L2(Xm,X⊗m,ν×m).

Let us observe that for f ∈ L2(Xm,X⊗m, ν×m) the formula

Im(f) =

∫
Xm

f(x1, · · · , xm)1{∀i ̸=j,xi ̸=xj} Ñ(dx1) · · · Ñ(dxm).

is a symbolic notation, because on the right hand side, the quantities to be substracted

to the integral on Xm are generally not defined for non regular functions f .

It has a sense if f is well defined on diagonals by continuity, X being supposed

topological. A sense may also be yielded by Hilbertian methods, supposing f allows

to define trace operators.

The sub-vector space of L2(Ω,A,P) generated by the variables In(f), f ∈ L2(Xn,

X⊗n, ν×n) is the Poisson chaos of order n denoted Cn. The equality

L2(Ω,A,P) = R⊕+∞
n=1 Cn. (29)

has been proved by K. Ito (see [21]) in 1956. This proof is based on the fact that the

set {N(E1) · · ·N(Ek), (Ei) disjoint sets in X} is total in L2(Ω,A,P).
There are now several proofs of this result. A combinatorial proof is possible by

counting the role of successive diagonals (cf [39] and [12] §4.1.) By transportation of

structure, the density of the chaos has a short proof using stochastic calculus for the

Poisson process on R+ (cf Dellacherie- Maisonneuve-Meyer [17] p207).
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Thanks to the density of the chaos the following expansion is easily obtained (cf

[45]) for u ∈ L1 ∩ L∞(ν) with small ∥u∥∞,

eN(log(1+u))−ν(u) = 1 +

+∞∑
n=1

1

n!
In(u

⊗n). (30)

Let us mention the relationship between the strongly continuous semigroup of the

bottom structure pt in L
2(ν) and the one of the upper structure Pt in L

2(P) (see [12]

for a proof). For all u measurable function with − 1
2 6 u 6 0,

∀t > 0, Pt[e
N(log(1+u))] = eN(log(1+ptu)). (31)

By (30) and (31) the vector spaces Cn are preserved by Pt and

Pt(In(u
⊗n)) = In((ptu)

⊗n)). (32)

It is generally spoken of second quantization for the transform (pt) 7→ (Pt). More

precisely the second quantization maps the generator a of pt to an operator on the

Fock space which may be then lifted up either on the Wiener space or on the Poisson

space and in this later case corresponds to the generator A of Pt.

Remark 14 Let us suppose that the bottom semigroup pt be generated by a tran-

sition kernel p̃t(x, dy) from (X,X ) into itself, which be simulatable in the sense that

there exists a probability space – that we choose here for the sake of simplicity of

notation to be (R,R, ρ) – and a family of random variables ηt(x, r) such that the law

of ηt(x, r) under ρ(dr) be p̃t(x, dy) .

Then, using our notation in which we have ω =
∫
εx N(dx), the fact that the

upper semigroup represents the evolution of independent particles each governed by

pt and with initial law N (see the introduction of [12]) may be expressed, for F

A-measurable and bounded, by the formula

PtF = ÊF (
∫
εηt(x,r) N ⊙ ρ(dxdr)) (33)

in analogy with the Mehler formula for the Ornstein-Uhlenbeck semigroup on the

Wiener space or extensions of it (see [7] p116). Applying (33) to F = expN log(1 + g)

for − 1
2 6 g 6 0 gives

PtF = Ê exp

∫
log(1 + g(ηt(x, r)) N ⊙ ρ(dxdr)

what by formula (13) leads anew to (31) by a different way :

PtF = expN log(
∫
(1 + g(ηt(x, r))ρ(dr)) = expN log(1 + ptg). �

Remark 15 Surgailis [45] has shown that in the correspondence between pt and Pt
given by (32) a necessary and sufficient condition Pt be Markov is that pt and its

adjoint be Markov operators (i.e. positivity preserving and s.t. pt1 6 1).

In our framework pt is selfadjoint and so is Pt. �
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4.2. Decomposition of D in chaos.

Let us precise some notation. On the upper space (Ω,A,P,D,Γ) the Dirichlet form

is denoted E .
The product structure (X,X , ν,d, γ)n will be denoted (Xn,X⊗n, ν×n,dn, γn) (cf

[11] Chap V). It is endowed with the Dirichlet form en[f ] =
1
2

∫
γn[f ]dν. The func-

tions in dn which are symmetric define a sub-structure of (Xn,X⊗n, ν×n,dn, γn)

denoted (Xn,X⊗n
sym, ν

×n,dn,sym, γn). The semigroup associated with en is denoted

p⊗nt . Our choice of gradient for the bottom space (see §2.3 above) induces a gradient

for (Xn,X⊗n, ν×n,dn, γn) that we denote (·)♭n with values in (L2
0(R,R, ρ))⊗n :

(f ♭n)(x1, r1, x2, r2, · · · , xn, rn)
= (f(·, x2, · · · , xn))♭(x1, r1) + (f(x1, ·, x3, · · · , xn))♭(x2, r2) + · · ·

let us note that if f is symmetric, then f ♭n is symmetric of the pairs (xi, ri).

Let be f(x1, . . . , xm) = f1(x1) · · · fm(xm) ∈ dm and g(x1, . . . , xn) = g1(x1) · · · gn(xn) ∈
dn. By polarization of (32) PtImf = Imp

⊗m
t f gives

Et[Imf, Ing] = 1
t ⟨Imf − PtImf, Ing⟩L2(P) = 1

t ⟨Im(f − p⊗mt f), Ing⟩

= δmnm!⟨ f−p
⊗m
t f
t , g⟩L2(ν×m).

By the theory of symmetric strongly continuous contraction semigroups, we have

F ∈ D if and only if limt↓0 ↑ Et[F ] < +∞ and E [F ] = limt↓0 Et[F ]. Taking f = g, we

obtain that Imf ∈ D and E [Imf ] = m!em[f ]. Then by density we obtain

Proposition 16 For f ∈ dm the random variable Imf (= Im(f̃)) belongs to D. The

vector spaces Dm generated by Imf for f ∈ dm, are closed and orthogonal in D. The

sum

D = R
⊕
n > 1

Dn

is direct in the sense of the Hilbert structure of D (∥ · ∥2D = ∥ · ∥2L2 + E [·]).
Every function F in D decomposes uniquely

F = E[F ] +
∑
n > 1

In(Fn)

with Fn ∈ dn.

Proof. It remains only to prove the density of the Dirichlet chaos Dn. Let be F ∈ D
and let F =

∑
In(Fn) be its L2-chaos expansion. Then

1
t ⟨F − PtF, F ⟩L2(P) = 1

t

∑
n > 1⟨In(Fn − p⊗nt Fn), InFn⟩L2(P)

=
∑
n > 1 n!⟨

Fn−p⊗nt Fn
t , Fn⟩L2(ν×n).
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Since on the left-hand side 1
t ⟨F − PtF, F ⟩ ↑ E [F ] < +∞ it follows that all terms on

the right-hand side, which are increasing, possess limits what yields Fn ∈ dn and the

proposition follows.

Let us emphasize that this proof is only based on the relation of second quantiza-

tion (32) and would be still valid on the Wiener space for instance equipped with a

generalized Mehler type structure (cf e.g. [7] p113 et seq.) or on the Poisson space

equipped with a non local Dirichlet form on the bottom space.

Let u ∈ L∞ ∩ d, applying the gradient operator ♯ to the two sides of (30) gives

eN log(1+tu)−tν(u)
∫

tu♭

1 + tu
dN ⊙ ρ =

∑
n > 1

tn

n!
(In(u

⊗n))♯

what yields, taking terms in tn on both sides

(In(u
⊗n))♯ =

n−1∑
q=0

(−1)q
n!

(n− 1− q)!
In−1−q(u

⊗(n−1−q))

∫
uqu♭ dN ⊙ ρ. (34)

and

1

i!

1

j!
Γ[Iiu

⊗i, Ijv
⊗j ]

=

∫ ( i∑
k=1

Ii−ku
⊗(i−k)

(i− k)!
(−1)kuk−1

)(
j∑
ℓ=1

Ij−ℓv
⊗(j−ℓ)

(j − ℓ)!
(−1)ℓvℓ−1

)
γ[u, v] dN. (35)

If f is the symmetrized of f1(x1) · · · fm(xm) then (34) writes

Im(f)♯ =∫ (
mIm−1f

♭ −m(m− 1)Im−2f
♭ +m(m− 1)(m− 2)Im−3f

♭ − · · ·
)
dN ⊙ ρ (36)

where Im−p acts on the m− p first arguments of f and ♭ acts on the last one, all free

arguments being taken on the same point x.

Extending formulae (34)-(36) from tensor products to general functions f ∈ dm
supposes a priori that f does possess traces on diagonals. Indeed let us suppose f and

g be regular so that values on diagonals make sense, then defining for regular symmet-

ric functions f(x1, . . . , xm) and g(y1, . . . , yn) the (k, ℓ)-γ-contraction, for 1 6 k 6 m

and 1 6 ℓ 6 n, denoted f
γ
≍
k, ℓ

g as follows

f
γ
≍
k, ℓ

g (x1, · · · , xm−k, y1, · · · , yn−ℓ, x) =

γ[f(x1, · · · , xm−k, x, · · · , x, ·), g(y1, · · · , yn−ℓ, x, · · · , x, ·)](x),
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the function f
γ
≍
k, ℓ

g is symmetric in (x1, · · · , xm−k) and in (y1, · · · , yn−ℓ). Then for-

mulae (34)-(36) extend to symmetric functions f and g as

Γ[Im(f), In(g)] =

m∑
k=1

n∑
ℓ=1

(−1)k+ℓ
m!n!

(m− k)!n− ℓ)!
Im−kIn−ℓ

∫
(f

γ
≍
k, ℓ

g) dN. (37)

where Im−k operates on the xi’s, In−ℓ operates on the yj ’s and N on x.

But this formula is unsatisfactory because we know that Im(f) is defined and

in D for general functions f ∈ dm which dont have defined values on diagonals in

general. Actually the values on diagonals cancel in formula (37). To see this we have

to consider the Fock space for the gradient and to come back to the lent particle

formula.

The random Poisson measure N⊙ρ (cf §2.2) is defined on (Ω×Ω̂,A⊗Â,P×P̂) with
intensity ν×ρ on (X×R,X ⊗R). It possesses an expansion in chaos : ∀F ∈ L2(P×P̂)

F = EÊF +
∑
n > 1

Jn(Fn)

where Jn denotes the multiple integral for Ñ ⊙ ρ and where Fn ∈ L2
sym((ν × ρ)×n).

Let us remark that the random Poisson measure N may be seen as a function of

N ⊙ρ and that the multiple integrals In are nothing else but Jn applied to a function

G(x1, r1, · · · , xn, rn) not depending on the ri’s. We can now state

Proposition 17 Let be f ∈ dm,sym, by Prop 16 the multiple integral Im(f) belongs

to D.
a) Its gradient is given by

(Im(f))♯ =

∫
ε−(Im−1(f))

♭dN ⊙ ρ = m

∫
Im−1(φ) N ⊙ ρ(dxdr) (38)

where we note ψ(x1, . . . , xm−1, x, r) = (f(x1, . . . , xm−1, ·))♭(x, r) and φ is defined as

φ(x1, . . . , xm−1, x, r) = ψ(x1, . . . , xm−1, x, r)1{xi ̸=x ∀i=1,...,m−1}

so that φ(·, · · · , ·, x, r) ∈ L2
sym(ν×(m−1)) and Im−1(φ) is defined.

b) This gradient may also be written

(Imf)
♯ = Jm(f ♭m) (39)

so that

Γ[Im(f), In(g)] = Ê[Jm(f ♭m)Jn(g
♭n)]. (40)

Proof. Let be f ∈ dm,sym. Let us apply the lent particle formula to Im(f). We have

ε+Im(f) = Im(f) +mIm−1f P× ν-a.e.
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and since Im(f) does not depend on x

(ε+Im(f))♭ = m(Im−1f)
♭ P× ν × ρ-a.e.

Now, applying the operator ε− amounts to take the preceding relation with ω changed

into ε−ω and to work under the measure PN instead of P × ν. That means that a

functional F (Ñ(u), x) is changed into

ε−x (F (Ñ(u), x)) = F (

∫
u(y)1{y ̸=x}Ñ(dy), x) PN -a.e.

Taking m = 2 for instance, we see that ε−(I1f) must be written

PN -a.e.
∫
f(y, x)1{y ̸=x}Ñ(dy) instead of (I1f)(x) − f(x, x). Thus the part a) of the

statement is a direct application of the lent particle formula.

b) Since ♭ takes its values in L2
0(R,R, ρ), it is equivalent to use the compensated

random measure Ñ ⊙ ρ instead of N ⊙ ρ in (38).

Now m
∫
Im−1(φ)dÑ ⊙ ρ = Jm(f ♭m) as seen by beginning with f = u⊗m, then po-

larizing to f symmetrized of u1⊗· · ·⊗um and then to general f ∈ dn,sym by density.

Let us remark that formula (38) allows a new simple proof of the orthogonality of the

chaos in D. Let f be as in the proposition. We have

2E [Imf ] = EΓ[Imf ] = Em2
∫
γ[Im−1(f1{xi ̸=x∀i})] N(dx)

= m2
∫
ε−γ[Im−1f ] dNdP

= m2
∫
γ[Im−1f ]dPdν (by Lemma 2)

= m2(m− 1)!
∫
γ[f ]dν×(m−1)dν

= m!2em[f ].

and similarly with the scalar products. Now (39) yields an even shorter proof using

the orthogonality of the chaos generated by Jn under P×P̂, since ⟨f ♭m , g♭m⟩L2(ν×ρ)m =

2em[f, g].

Contrarily to the Wiener case the random variables Im(f) are not regular in general.

Their distributions may contain Dirac masses. Even in the first chaos the ♯ or the Γ

applied to I1u = Ñu yields a non deterministic result, and the sharp operator does

not diminish the order of the chaos. Studying regularity of multiple integrals needs

therefore additional hypotheses.

4.3. Density for (I1(g), . . . , In(g
⊗n)).

Relation (34) yields immediately

1

i!

1

j!
Γ[Ii, Ij ] =

∫ ( i∑
k=1

Ii−k
(i− k)!

(−1)kgk−1

)(
j∑
ℓ=1

Ij−ℓ
(j − ℓ)!

(−1)ℓgℓ−1

)
γ[g] dN. (41)
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Let us denote I the column vector of (I1, . . . , In), we have

Γ[I, It] =
∫
V V tγ[g] dN

with V the column vector of (−1,−I1 + g, . . . , n!
∑n
k=1

In−1

(n−k)! (−1)kgk−1).

Let us precise now some hypotheses. We suppose ν{γ[g] > 0} = +∞ and that

assumptions are fulfilled such that we have (BC) on the bottom space and (EID) on

the upper space, as usual.

If for some ω ∈ Ω the matrix Γ[I, It] is singular, this means that all the vectors

V (ω,Xi(ω)) for Xi ∈ supp(ω) ∩ {γ[g] > 0}

belong to the same hyperplan of Rn, in other words, this implies that there exist

λ0(ω), . . . , λn−1(ω) not all null such that:

−λ0(ω) + λ1(ω)(−I1 + g) + · · ·+ λn−1(ω)n!
n∑
k=1

In−1

(n− k)!
(−1)kgk−1 = 0

on all the points of supp(ω) ∩ {γ[g] > 0}.
Since g ∈ d, by (EID) on the bottom space — which is always true for scalar

functions — the measure g∗[1{γ[g]>0}.ν] is absolutely continuous hence continuous

(diffuse). As ν{γ[g] > 0} = +∞ the random Poisson measure image by g of the

points of N which are in {γ[g] > 0} do possess infinitely many distinct points. Hence

the g(Xi(ω)) cannot annul a polynomial except if it is identically sero.

The question is therefore to know whether

−λ0(ω) + λ1(ω)(−I1 + x) + · · ·+ λn−1(ω)n!
n∑
k=1

In−1

(n− k)!
(−1)kxk−1 ≡ 0

implies λ0(ω) = · · · = λn−1(ω) = 0.

But this is due to the fact that the annulation of the coefficients of this polynomial

builds a triangular linear system whose diagonal terms are−λ0(ω), . . . , n!(−1)nλn−1(ω).

We have proved

Proposition 18 If the upper structure satisfies (EID), for g ∈ L∞ ∩ d such that

ν{γ[g] > 0} = +∞ the vector (I1(g), . . . , In(g
⊗n)) has a density on Rn.

Remark 19 This result is quite different from what happens on the Wiener space

since there the law of (I1(f), . . . , In(f
⊗n)) is carried by the algebraic curve of equation

x2 = 2!H2(∥f∥2, x1)
...

xn = n!Hn(∥f∥2, x1)
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where Hn(λ, x) is the Hermite polynomial given by

exp(tx− t2λ

2
) =

∞∑
n=0

tnHn(λ, x).

4.4. Density for (In1(f
⊗n1
1 ), . . . , Inp(f

⊗np
p )).

Let f = (f1, . . . , fp) ∈ (L1∩L∞∩d)p and let be J the column vector (In1(f
⊗n1
1 ), . . . ,

Inp(f
⊗np
p )) where we suppose ni > 1 ∀i.

Defining the polynomials Pi by Pi(x) = i!
(∑i

k=1
Ii−k
(i−k)! (−1)kxk−1

)
we have by

(41) the equality between p× p-matrices

Γ[J ,J t] =

∫ (
Pni(fi)Pnj (fj)γ[fi, fj ]

)
ij
dN.

By Lemma 8

{det Γ[J ,J t] = 0} ⊂ {
∫

det γ[f, f t]Pn1(f1)
2 · · · Pnp(fp)2 dN = 0}.

Let us assume ν{det γ[f, f t] > 0} = +∞, and that we have (EID) below and above.

The image by f of 1{det[f,ft]>0} · ν is absolutely continuous w.r. to Lebesgue measure

and the Poisson randommeasure image ofN |{det[f,ft]>0} has an absolutely continuous

and infinite intensity measure, it possesses necessarily points outside the finite union

(less than
∑p
i=1(ni − 1)) of hyperplans defined by Pni(xi) = 0 whose term of highest

degree is (ni)!(−1)nixni−1
i . We obtain

Proposition 20 If (EID) holds below and above, and if γ[f, f t] is invertible ν-a.e.

(In1(f
⊗n1
1 ), . . . , Inp(f

⊗np
p )) has a density as soon as ni > 1 ∀i.

Remark 21 Let us compare with the situation on the Wiener space. We dispose

only of sufficient conditions of regularity, but we can nevertheless compare the thread

of the arguments.

We have DIn(g
⊗n) = nIn−1(g

⊗(n−1))g and

Γ[Ini(f
⊗ni
i ), Inj (f

⊗nj
nj )] = ninjIni−1(f

⊗(ni−1)
i )Inj−1(f

⊗(nj−1)
nj−1 )

∫
fifj dt.

Since (EID) holds on the Wiener space a sufficient condition of density of J is that

almost surely the vector(
n1In1−1(f

⊗(n1−1)
1 )f1(t), . . . , npInp−1(f

⊗(np−1)
p )fp(t)

)
generates a p-dimensional space when t varies. It is easily seen by induction on n that

∀f ∈ L2(dt), ∥f∥ ̸= 0 : P{In(f⊗n) = 0} = 0. It follows that on the Wiener space, J
has a density as soon as ni > 1 ∀i and (f1, . . . , fp) are linearily independent in L2(dt).
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4.5. Other functionals of Poisson integrals.

4.5.1. Density of (N(f1(g), . . . , N(fn(g))). Let g ∈ L∞ ∩ d and let fi be regular real

functions on R. Let us denote K = (N(f1(g), . . . , N(fn(g)))
t and suppose ν{γ[g] >

0} = +∞. From Γ[N(fi(g)), N(fj(g))] =
∫
f ′i(g)f

′
j(g)γ[g]dN we obtain that the

matrix Γ[K,Kt] is singular if the vectors (f ′1(g), . . . , f
′
n(g)) taken on the points of ω

are in a same hyperplan. Now the points g(x), x ∈ supp(ω), have an accumulation

point at zero. We obtain

Proposition 22 Suppose (EID) holds above, g ∈ L∞∩d, ν{γ[g] > 0} = +∞, and the

functions fi be analytic at the neighborhood of O such that (1, f1, . . . , fn) be linearily

independent, then (N(f1(g)), . . . , N(fn(g))) has a density.

Since there are infinitely many distinct points g(x), x ∈ supp(ω), we see also that

without analyticity hypothesis it suffices that any hyperplan cuts the curve

(f ′1(t), . . . , f
′
m(t))t∈R at a finite number of points, the fi being supposed C1 ∩ Lip.

4.5.2. Density of (
∑
j N(fj), . . . ,

∑
j(N(fj))

n). Let us consider Φ the column vector

of the polynomials Φk(x1, . . . , xn) =
∑n
j=1 x

k
j , f = (f1, . . . , fn) ∈ dn and let us pose

V the column vector of the Φk(N(f1), . . . , N(fn)). We obtain

Γ[V, V t] = ∇Φ(Nf1, . . . , Nfn)Γ[Nf,Nf
t](∇Φ)t(Nf1, . . . , Nfn)

= ∇Φ(Nf1, . . . , Nfn)
∫
γ[f, f t]dN(∇Φ)t(Nf1, . . . , Nfn)

det Γ[V, V t] = (det∇Φ(Nf1, . . . , Nfn))
2 det

∫
γ[f, f t]dN

where ∇Φ is the Jacobian matrix of Φ.

det∇Φ is a Vandermonde determinant, if ν{fi ̸= fj} = +∞, det∇Φ(Nf1, . . . , Nfn)

cannot vanish by Paul Lévy’s theorem.∫
γ[f, f t]dN is an infinite sum of non negative symmetric matrices, as before we

can state

Proposition 23 Supposing (EID) above, ν{fi ̸= fj} = +∞ ∀i ̸= j, and

ν{det γ[f, f t] > 0} = +∞, then V has a density.

4.6. Density of In(f) for f ∈ dn,sym.

If f(x1, · · · , xn) is a symmetric element of dn, the function (f(x1, · · · , xn−1, ·))♭(x, r)
may be seen as a symmetric Hilbert valued function in dn−1(H) with H = L2(ν×ρ).
So that we can iterate the operator ♭ going down on the arguments

(f(x1, · · · , xn−2, ·, ·))♭♭ ∈ dn−2(H ⊗H).

Let us apply this with Prop 17:

Γ[In(f)] = n2
∫
ε−γ[In−1(f)]dN.
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By Lemma 2 for Γ[In(f)] to be > 0 it suffices

γ[In−1(f)] > 0 P× ν-a.e.

i.e. that In−1f
♭ be ̸= 0 P× ν × ρ-a.e. hence it suffices that ν × ρ-a.e. In−1f

♭ have a

continuous law.

Now getting down the induction and using Paul Lévy’s theorem yields that it

suffices that

(ν × ρ)n−1-a.e. ν{x1 : f (n−1)♭(x1, x2, r2, . . . , xn, rn) ̸= 0} = +∞.

Applying this to the classical case where the bottom space is R+ equipped with the

Lebesgue measure and the form e[f ] = 1
2

∫
f ′2(t)dt, where we can choose f ♭ = f ′ · ξ

with ξ reduced Gaussian, we obtain

Proposition 24 For n > 2, In(f) has a density if the Lebesgue measure of the set

{x1 : ∂n−1f̃
∂x2···∂xn ̸= 0} is infinite dx2 · · · dxn-a.e.

This extends to the classical case on Rd taking f ♭ = ∂f
∂x1

ξ1 + · · ·+ ∂f
∂xn

ξn with the ξi
i.i.d. reduced Gaussian.

Remark 25 There is a major difference with the case of the Brownian motion about

the sum of the series
∞∑
n=0

tn

n!
In(f

⊗n).

In the case of Wiener space this sum is a function of
∫
fdB = I1(f) since it is equal

to et
∫
fdB− 1

2 t
2∥f∥2

. On the Poisson space it is not a function of I1(f) = N(f) but of

N(log(1+tf)) and for f ∈ L∞∩d and small t by our usual argument using Paul Lévy’s

theorem the pair

(Nf,N log(1 + tf)) do have a density if ν{γ[f ] > 0} = +∞.

It is natural to ask about the density of the vector (N log(1 + t1f), . . . , N log(1 +

tnf)). For f ∈ L∞ ∩ d, supposing 0 < t1, . . . , tn < ∥f∥∞, by the method it suffices

to have (BC) down, (EID) above, ν{γ[f ] > 0} = +∞ and the ti to be distinct.

Remark 26 In the Wiener case multiple integrals obey a product formula (cf. Shige-

kawa [43] p276) allowing to express explicitely Im[f ]In[g] as linear combination of

multiple integrals of order less or equal to m+ n.

A similar formula exists on the Poisson space slightly more complicated. It may

be obtained in the following way. Let u, v ∈ L2 ∩ L∞(ν) with small uniform norm.

By the relation

eN(log(1+su))−sν(u)eN(log(1+tv))−tν(v) = eN(log(1+su+tv+stuv))−ν((su+tv+stuv)estν(uv)
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thanks to (30) we have

(1 +

∞∑
m=1

sm

m!
Im(u⊗m)(1 +

∞∑
n=1

tn

n!
In(v

⊗n) = (1 +

∞∑
p=1

1

p!
Ip((su+ tv + stuv)⊗p)estν(uv)

and the product formula is obtained by identification of the term in smtn of the two

sides. Then it may be extended by polarization to f̃ and g̃ for f = f1 ⊗ · · · ⊗ fm and

g = g1 ⊗ · · · ⊗ gn and then for general f ∈ L2(ν×m), g ∈ L2(ν×n) by density. See

[22], [35], [46] for different forms of such a formula, also [40], [39], and [17] p261 for a

general expression and proof.

If we apply this product formula to Jm(f ♭m)Jn(g
♭n) using ÊJk(h) = Ik(

∫
hρ(dr1)

· · · ρ(drk)) for h(x1, r1, · · · , xk, rk) ∈ L2
sym(ν× ρ)×k) we could obtain another expres-

sion of Γ[Imf, Ing] = ÊJm(f ♭m)Jn(g
♭n) to be compared with (40).
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équations différentielles stochastiques” Ann. Inst. Henri Poincaré vol 19, n1, 1-36, (1993)
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