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Abstract
We will take profit of explicit operator relations and a certain algebraization

of the stability to obtain the Moore-Penrose inverse of singular integral oper-
ators with shift, having piecewise continuous functions as coefficients. This is
considered for two different shifts: the reflection operator on the complex unit
circle, and a weighted Carleman shift (the so-called flip operator).
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1. Introduction

Let PC(T) stand for the space of all essentially bounded piecewise continuous func-

tions on the unit circle T := {t ∈ C : |t| = 1}, i.e., functions φ ∈ L∞(T) for which

the one-sided limits

φ±(t) := lim
ε→0±

φ(teiε)

exist for each t ∈ T. Thus, as usual, [PC(T)]2×2 will denote the C∗-algebra of all

2 × 2-matrices with entries from PC(T). In addition, let L2(T, w) be the weighted

Lebesgue space over T equipped with the norm

∥f∥2,w := ∥wf∥2 , (1)

where ∥ · ∥2 denotes the usual norm of the Hilbert space L2(T). We will assume that

all the weights w : T −→ [0,+∞] are such that w,w−1 ∈ L2(T), and

cw := sup
t∈T

sup
ε>0

(
1

ε

∫
T(t,ε)

w(τ)2|dτ |

)1/2(
1

ε

∫
T(t,ε)

w(τ)−2|dτ |

)1/2

<∞ , (2)

where

T(t, ε) := {τ ∈ T : |τ − t| < ε}, ε > 0.

The property (2) is the so-called Hunt–Muckenhoupt–Wheeden condition, and A2(T) is
referred to as the set of Hunt–Muckenhoupt–Wheeden weights. The space [L2(T, w)]2
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refers to the Hilbert space of all column-vectors of length 2 with components from

L2(T, w).
The Cauchy singular integral operator on T is defined almost everywhere by

(STf)(t) =
1

πi
p.v.

∫
T

f(τ)

τ − t
dτ.

If the weight w satisfies condition (2), then ST ∈ L(L2(T, w)). Here, L(L2(T, w))
stands for the C∗-algebra of all bounded and linear operators acting from L2(T, w)
into L2(T, w).

In the present work we deal with the singular integral operators

A = a0IT + b0ST + a1J + b1STJ, (3)

with coefficients a0, b0, a1, b1 ∈ PC(T), a shift operator J satisfying the Carleman

condition (i.e., J2 = I) which can be either the reflection operator (defined by a

rotation action of π amplitude on the unit circle T) or the flip operator (which is a

weighted backward Carleman shift).

The reflection operator has the form

(Jφ)(t) = φ(−t), t ∈ T, (4)

in which case A is defined on the weighted Lebesgue space L2(T, w), with weights w

belonging to Ae2(T) := {w ∈ A2(T) : w(−t) = w(t), t ∈ T}.
On the other hand, the flip operator is given by

(Jφ)(t) =
1

t
φ

(
1

t

)
, t ∈ T, (5)

and for this case the operator A is assumed to be defined in L2(T).
Fredholm criteria for the operators A with shift operators as in (4) or (5) are

already known (see [3, 4, 5]). The main goal of this paper is to obtain the so-called

Moore-Penrose inverse of A. This inverse is closely related to the k-splitting property,

and some evidence of this will be also exposed.

To achieve our aim, we will use the following notions. We recall that two bounded

linear operators T : X1 −→ X2 and S : Y1 −→ Y2 acting between Banach spaces are

called equivalent (cf., [1], [6]) if there are two boundedly invertible linear operators,

E : Y2 → X2 and F : X1 → Y1, such that

T = E S F (6)

holds. The notion of equivalence after extension relation also plays here a significant

role. We say that two operators T and S are equivalent after extension if two ad-

ditional Banach spaces Z and W exist in such a way that T ⊕ IZ and S ⊕ IW are

equivalent operators. In the presence of the particular case E = F−1 in (6), we will
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say that we have a similarity relation between the operators T and S. It follows from

(6) that if two operators are equivalent (or equivalent after extension), then their

kernels have the same dimension.

The paper is organized as follows: In section 2, we describe an equivalence relation

(proved in [4]) between the operator A with the reflection shift operator (4) and a

matrix singular integral operator DT without shift, as well as an equivalence after

extension relation between the operator A with the flip operator J , defined in (5),

and a new operator DT without flip. This last equivalence after extension relation

was proved in [5]. In the final section, the so-called projection methods, as well as

the notions of singular values and stability are considered in a general setting. These

previous results and notions will be useful to relate and obtain, in explicit form, the

Moore-Penrose inverse of the singular integral operator presented in (3).

2. Operator relations

In the articles [4] and [5], it was obtained a direct relation between the operator A and

a matrix singular integral operator without additional associated operators: for the

reflection shift operator (4) it is a similarity transformation FAF−1 and for the flip

operator (5) it is a transformation after extension by two invertible operators GAH.

For the reader convenience, we will formulate these results below.

First we will consider the case of the reflection shift operator (Jφ)(t) = φ(−t),
t ∈ T. Let w ∈ Ae2(T) and T+ := {t ∈ T : 0 < arg t < π}. We define the following

operators:

M : [L2(T+, w)]
2 −→ L2(T, w)

M

(
φ1

φ2

)
= ℓ0φ1 + J−1ℓ0φ2, (7)

where ℓ0 denotes the zero extension operator from T+ to T (in the corresponding

spaces). Note that M ∈ L([L2(T+, w)]
2, L2(T, w)). Moreover,

M−1φ =

(
rT+φ

rT+Jφ

)
, (8)

where rT+ : L2(T, w) −→ L2(T+, w) denotes the restriction operator rT+φ = φ|T+
.

The operatorM−1 is linear and bounded from L2(T, w) onto [L2(T+, w)]
2, i.e.,M−1 ∈

L(L2(T, w), [L2(T+, w)]
2).

We will also make use of the matrix operators

K±1 =
1√
2

(
I I
I −I

)
∈ L([L2(T+, w)]

2), (9)

and

G±1(t) = diag(1, t±1). (10)
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Finally, we will consider the operator N and its inverse N−1 defined by

N(ζ)(t) = ζ(t2), N−1(ζ)(t) = ζ(t1/2) , (11)

with N ∈ L([L2(T, w)]2, [L2(T+, w)]
2), and N−1 ∈ L([L2(T+, w)]

2, [L2(T, w)]2).
The operators above take part in the construction of the following equivalence

relation.

Theorem 2.1 ([4, Theorem 2.2]) The initial singular integral operator with reflec-

tion (Jφ)(t) = φ(−t), t ∈ T,

A = a0IT + b0ST + a1J + b1STJ

(acting between L2(T, w) spaces) is equivalent to the matrix singular integral operator

(without shift)

DT = uTIT + vTST, DT ∈ L[L2(T, w)]2.

The operator equivalence relation between A and DT is presented in the form of the

following similarity transformation

F−1AF = DT, (12)

where

F =MKGN ∈ L([L2(T, w)]2, L2(T, w)),

F−1 = N−1G−1K−1M−1 ∈ L(L2(T, w), [L2(T, w)]2)

and the explicit form of the operators M±1, K±1, G±1, N±1 is given in (7), (8), (9),

(10) and (11).

The connection between the coefficients of the operators A and DT is given by the

formulas:

uT(t) =
1

2

(
1 1

t−1/2 −t−1/2

)
u1(t

1/2)

(
1 t1/2

1 −t1/2
)

(13)

and

vT(t) =
1

2

(
1 1

t−1/2 −t−1/2

)
v1(t

1/2)

(
1 t1/2

1 −t1/2
)
. (14)

where

u1(t) =

(
rT+a0(t) rT+a1(t)

rT+a0(−t) rT+a1(−t)

)
,

and

v1(t) =

(
rT+ b0(t) rT+ b1(t)

rT+ b0(−t) rT+ b1(−t)

)
.
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Now, we will formulate an equivalence relation for the case of the flip operator.

Consider the following operators: B : L2(T) → L2(R) defined by

(Bϕ)(x) =
1

x+ i
ϕ

(
x− i

x+ i

)
, x ∈ R (15)

which inverse is

(B−1ψ)(t) =
i21/2

1− t
ψ

(
i
1 + t

1− t

)
, t ∈ T \ {1}, (16)

and the operator MR+ given by the rule

MR+

(
φ1(x)
φ2(x)

)
= φ(x) :=

{
φ1(x), x ∈ R+

φ2(−x), x ∈ R−
(17)

(where R+ := (0 +∞) and R− := (−∞, 0)); the matrix operators

K±1 =
1√
2

(
I I
I −I

)
∈ L([L2(R+)]

2), (18)

as well the operator

(NR+φ)(x) = φ(x2), NR+ ∈ L([L2(R+, |x|−1/4
)]2, [L2(R+)]

2), (19)

and the operator RR+ given by

RR+ =

(
SR+ + U1,R+ 0

0 IR+

)
∈ L([L2(R+)]

2) (20)

where

(SR+f)(x) =
1

πi

∫
R+

f(u)

u− x
du

and

(U1,R+f)(x) =
1

πi

∫
R+

f(u)

u+ x
du , x ∈ R+.

Note that SR++U1,R+ is an invertible operator and its inverse is given by SR+−U1,R+ .

Thus, RR+ is also an invertible operator.

All these operators are used in the following operator equivalence relation which

is given in explicit form

GAV = DR+ ,

with operators G and V defined by

G = N−1
R+
K−1M−1

R+
B ∈ L(L2(T), [L2(R+, |x|−1/4

)]2),

V = B−1MR+
KRR+

NR+
∈ L([L2(R+, |x|−1/4

)]2, L2(T)),
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and the explicit form of the operators B±1, M±1
R+

, K±1, N±1
R+

and RR+
is given in

(15)–(20). The operator DR+ has the form

DR+ = uR+IR+ + vR+SR+ .

The relation between the coefficients uR+ and vR+ of this operator DR+ and the

coefficients of the operator A is given by the formulas:

uR+(x) =

1

2

(
(a1(y) + b1(y))− (a1(−y) + b1(−y)) (a0(y) + b0(y))− (a0(−y) + b0(−y))
(a1(y) + b1(y)) + (a1(−y) + b1(−y)) (a0(y) + b0(y)) + (a0(−y) + b0(−y))

)
vR+(x) =

1

2

(
(a0(y)− b0(y)) + (a0(−y)− b0(−y)) (a1(y)− b1(y)) + (a1(−y)− b1(−y))
(a0(y)− b0(y))− (a0(−y)− b0(−y)) (a1(y)− b1(y))− (a1(−y)− b1(−y))

)
where

y =
x1/2 − i

x1/2 + i
, x ∈ R+.

Next, the operator DR+ is extended by the identity into the [L2(R, |x|−1/4
)]2 space.

This is in fact an equivalence after extension relation (see [1]) applied to DR+ where

the resulting operator has the form:

DR :=

(
DR+ 0
0 I[L2(R−,|x|−1/4)]2

)
∈ L([L2(R, |x|−1/4

)]2).

In addition, the operator DR can also be written in the form

DR = uRIR + vRSR

where

uR = χR− + ℓ0uR+ , vR = ℓ0vR+ ,

with ℓ0 being the zero extension operator, and where χR− is the characteristic function

on R−.

Now we pass from DR to a singular integral operator DT using the isometric

isomorphism

B2 := diag(B,B) (21)

from [L2(R, |x|−1/4
)]2 onto [L2(T, γ)]2 with the (Khvedelidze) weight

γ(t) =

∣∣∣∣i1 + t

1− t

∣∣∣∣−1/4

.

In explicit form:

DT := B−1
2 DRB2 = uTIT + vTST,
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with

uTIT = B−1
2 uRB2, vTIT = B−1

2 vRB2. (22)

More precisely, uT = diag(B0, B0)uR, and vT = diag(B0, B0)vR, where

(B0a)(t) = a

(
i
1 + t

1− t

)
, t ∈ T \ {1}.

Theorem 2.2 ([5, Proposition 1]) The singular integral operator

A = a0IT + b0ST + a1J + b1STJ

(acting on the space L2(T)) with Carleman shift operator (Jφ)(t) = 1
tφ
(
1
t

)
, t ∈ T, is

equivalent after extension to the matrix singular integral operator

DT = uTIT + vTST, DT ∈ L([L2(T, γ)]2), (23)

where γ(t) = |i 1+t1−t |
−1/4, and uT = diag(B0, B0)uR, and vT = diag(B0, B0)vR.

3. The Moore-Penrose invertibility of A

We will start by introducing a general framework which will then applied to our

operator A.

Let F be a finite dimensional Banach space with dimF = m. We recall that the

k-th approximation number (k ∈ {0, 1, . . . ,m}) of an operator A ∈ L(F ) is defined

by

sk(A) = dist(A,Fm−k) := inf{∥A− F∥ : F ∈ Fm−k},

where Fn−k denotes the collection of all operators (or matrices from Cn×n) having

the dimension of the range equal to at most n− k. It is clear that

0 ≤ s1(A) ≤ · · · ≤ sm(A) = ∥A∥L(F ).

Notice that the approximation numbers can be also defined as the singular values of

a square matrix An ∈ CnN×nN which are the square roots of the spectral points of

A∗
nAn, where A

∗
n means the adjoint matrix of An.

Definition 3.1 A sequence (An) of matrices nN ×nN is said to have the k-splitting

property if there is an integer k ≥ 0 such that

lim
n→∞

sk(An) = 0 and lim inf
n→∞

sk+1(An) > 0.

The number k is called the splitting number. Alternatively, we say the singular values

(computed via A∗
nAn) of a sequence (An) of k(n)× l(n) matrices An have the splitting

property if there exist a sequence cn → 0 (cn ≥ 0) and a number d > 0 such that they

are contained in [0, cn]∪ [d,∞) for all n. Moreover, the singular values of An are said

to meet the k-splitting property if, in addition, for all sufficiently large n, exactly k

singular values of An lie in [0, cn].
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In general terms, given a bounded linear operator A on a Banach space X (A ∈
L(X)), and an element f of X, let us consider the abstract operator equation

Aφ = f. (24)

For the approximate solution of this equation, we choose to approximate closed sub-

spaces Xn in which the approximate solutions φn of (24) will be sought. In practice,

the Xn spaces usually have finite dimension but we will not require this assumption.

We will assume that Xn are ranges of certain projection operators Ln : X −→ Xn so

that these projections converge strongly to the identity operator: s− limn→∞ Ln = I.

This strong convergence implies that ∪∞
n=1Xn is dense in X.

Having fixed subspaces Xn, we choose convenient linear operators An : Xn −→ Xn

and consider in the place of (24) the equations

Anφn = Lnf, n = 1, 2, . . . , (25)

with their solutions sought in Xn = ImLn.

A sequence (An) of operators An ∈ L(ImLn) is an approximation method for

A ∈ L(X) if AnLn converges strongly to A as n→ ∞.

Note that even if (An) is an approximation method for A, we do not yet know

anything about the solvability of the equations (25) and about the relations between

(eventual) solutions φn of (25) and the (possible) solution φ of (24).

The approximation method (An) for A is applicable if there exists a number n0
such that the equations (25) possess unique solutions φn for every n ≥ n0 and every

right-hand side f ∈ X, and if these solutions converge in the norm of X to a solution

of (24). An equivalent characterization of applicable approximation methods is the

notion of stability, where a sequence (An) of operators An ∈ L(ImLn) is called stable

if there exists a number n0 such that the operators An are invertible for every n ≥ n0
and if the norms of their inverses are uniformly bounded:

sup
n≥n0

∥A−1
n Ln∥ <∞.

Let (Ln) be a sequence of projections converging strongly to the identity I ∈ L(X).

The idea of any projection method for the approximate solution of (24) is to choose

a further sequence (Rn) of projections which also converge strongly to the identity

and which satisfy ImRn = ImLn. Thus, we choose An = RnALn : ImLn −→ ImLn
as the approximate operators of A. In fact, Lemma 1.5 in [7] proves that (RnALn) is

indeed an approximate method for A.

In the most interesting case of X being an infinite dimensional Banach space, a

sequence (Xn) of finite dimensional subspaces of X needs to be considered. Moreover,

we assume that there is a sequence (Ln) of projections from X onto Xn with strong

limit I ∈ X as n → ∞. Let F refer to the set of all sequences (An)
∞
n=0 of operators
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An ∈ L(ImLn) which are uniformly bounded: sup{∥AnLn∥ : n ≥ 0} < ∞. The

“algebraization” of F is given by the natural operations

λ1(An) + λ2(Bn) := (λ1An + λ2Bn), (An)(Bn) := (AnBn) (26)

and

∥(An)∥F := sup{∥AnLn∥ : n ≥ 0}

which make F to be an initial Banach algebra with identity (I|ImLn
). The set I of all

sequences (Gn) in F with limn→∞ ∥GnLn∥ = 0 is a closed two sided ideal in F . The

Kozak’s Theorem (Theorem 1.5 in [7]) establish that a sequence (An) ∈ F is stable if

and only if its coset (An) + I is invertible in the quotient algebra F/I.
If instead of a Banach space X we consider a Hilbert space H and Ln to be the

orthogonal projections Pn from H onto Hn, then (An)
∗ = (A∗

n) defines an involution

in F which makes F a C∗-algebra. Note that in this case the approximation numbers

of an operator An ∈ L(Hn) are just the singular values of An.

Let further T be a (possible infinite) index set and suppose that, for every t ∈ T ,

we are given an infinite dimensional Hilbert space Ht with identity operator It as

well as a sequence (Etn) of partial isometries Etn : Ht −→ H such that the initial

projections P tn of Etn converge strongly to It as n → ∞, the range projection of Etn
is Pn and the separation condition

(Esn)
∗Etn −→ 0 weakly as n→ ∞ (27)

holds for every s, t ∈ T with s ̸= t. Recall that an operator E : H′ −→ H′′ is a partial

isometry if EE∗E = E and that E∗E and EE∗ are orthogonal projections (which

are called the initial and the range projections of E, respectively). The restriction of

E to Im(E∗E) is an isometry from Im(E∗E) onto Im(EE∗) = ImE. We write Et−n
instead of (Etn)

∗, and set Hn := ImPn and Ht
n := ImP tn.

Let FT stand for the set of all sequences (An) ∈ F for which the strong limits

s− lim
n→∞

Et−nAnE
t
n and s− lim

n→∞
(Et−nAnE

t
n)

∗

exist for every t ∈ T , and define mappings W t : FT −→ L(Ht) by

W t(An) := s− lim
n→∞

Et−nAnE
t
n.

The algebra FT is a C∗-subalgebra of F which contains the identity, and W t are ∗-
homomorphisms. Moreover, FT is a standard algebra. This means that any sequence

(An) ∈ FT is stable if and only if all the operators W t(An) are invertible.

The separation condition (27) ensures that, for every t ∈ T and every compact

operator Kt ∈ K(Ht), the sequence (EtnK
tEt−n) belongs to the algebra FT , and for

all s ∈ T

W s(EtnK
tEt−n) =

{
Kt if s = t
0 if s ̸= t.

(28)
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Conversely, the above identity implies the separation condition (27). Moreover, the

ideal I belongs to FT . So we can introduce the smallest closed ideal J T of FT

which contains all sequences (EtnK
tEt−n) with t ∈ T and Kt ∈ K(Ht), as well as all

sequences (Gn) ∈ I.
Corresponding to the ideal J T , we introduce a class of Fredholm sequences by

calling a sequence (An) ∈ FT Fredholm if the coset (An) + J T is invertible in the

quotient algebra FT /J T . It is also known (see [7]) that if (An) ∈ FT is Fredholm,

then all operators W t(An) are Fredholm on Ht, and the number of the non-invertible

operators among the W t(An) is finite.

We have now the possibility to recall an important result concerning standard

algebras and relating some of the just presented notions.

Theorem 3.1 (see [7]) Let (An) be a sequence from the standard C∗-algebra FT .

(i) If the coset (An)+J T is invertible in the quotient algebra FT /J T , then all op-

erators W t(An) are Fredholm on Ht, the number of the non-invertible operators

among the W t(An) is finite, and the singular values of An have the k-splitting

property with

k(An) =
∑
t∈T

dimkerW t(An).

(ii) If W t(An) is not Fredholm for at least one t ∈ T , then for every integer k ≥ 0

sk(An) −→ 0, as n −→ ∞.

An specific algebraization of the stability for the operators under study runs as

follows. We start by considering the Fourier projection Pn ∈ L([L2(T, w)]2) that in

terms of the Fourier coefficients of a function ψ ∈ [L2(T, w)]2 acts componentwise

according to the rule

ψ =
∑
k∈Z

ψkt
k 7−→

n∑
k=−n

ψkt
k, n ∈ N.

In addition, we take the Lagrange interpolation operator Ln (which is bounded in

[L2(T, w)]2, see for instance [2]) associated to the points

tj = exp

(
2πij

2n+ 1

)
, j = 0, 1, . . . , 2n.

That is, Ln assigns to a function ψ its Lagrange interpolation polynomial Lnψ ∈
ImPn, uniquely determined, on each component, by the conditions (Lnψ)(tj) = ψ(tj),

j = 0, 1, . . . , 2n. One can show that ∥Pnψ − ψ∥2,w −→ 0 as n −→ ∞ for every

ψ ∈ [L2(T, w)]2 and in [9] it was proved (for the scalar case) that ∥Lnψ−ψ∥2,w −→ 0,

n −→ ∞.
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Let us now construct

An := Ln(aIT + bST)Pn, n ∈ Z+, (29)

where the operatorWn ∈ L([L2(T, w)]2) –which componentwise is the discrete version

of the flip operator (5)– acts by the rule

Wnψ =
n∑
k=0

ψn−kt
k +

−1∑
k=−n

ψ−n−k−1t
k.

First, note that the operators Wn and Pn are related as follows:

W 2
n = Pn, WnPn = PnWn =Wn. (30)

On the other hand, in [7, 8, 10] it was shown that:

LnaIT = LnaLn, STPn = PnSTPn, WnLnaWn = LnãPn (31)

(LnaPn)
∗ = LnaPn, (PnSTPn)

∗ = PnSTPn (32)

where for a ∈ L∞(T),

ã(t) = a

(
1

t

)
, t ∈ T.

We denote by T2 the index set {1, 2} and by FT2 the C∗-algebra of all operator se-

quences (An), withAn ∈ L(ImPn), for which there exist operators (∗-homomorphisms)

W 1(An), W
2(An) ∈ L([L2(T, w)]2) such that

s− lim
n→∞

PnAnPn =W 1(An) and s− lim
n→∞

WnAnWn =W 2(An)

s− lim
n→∞

(PnAnPn)
∗ =W 1(An)

∗ and s− lim
n→∞

(WnAnWn)
∗ =W 2(An)

∗.

Furthermore, let us introduce the subsets J 1 and J 2 of the C∗-algebra FT2 :

J 1 = {(PnKPn) + (Gn) : K ∈ K([L2(T, w)]2), ∥Gn∥ → ∞}
J 2 = {(WnLWn) + (Gn) : L ∈ K([L2(T, w)]2), ∥Gn∥ → ∞}.

Again, J T2 is the smallest closed two-sided ideal of FT2 which contains all sequences

(Jn) such that Jn belongs to one of the ideals J t, t = 1, 2.

In the case when equation (24) is solvable, in general it is not uniquely solvable

(which occurs also in the case of our operator A). In Hilbert spaces a distinguished

generalized solution of (24) –the least square solution– can be obtained as follows:

among all x in a Hilbert space H which minimize ∥Ax − y∥ choose that one with

minimal ∥x∥. The Moore-Penrose inverse A+ of A is such that the least square

solution of Ax = y is given by x = A+y.
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In more detail, an operator A ∈ L(H) is said to be Moore-Penrose invertible if

there is an operator B ∈ L(H) such that

ABA = A, BAB = B, (AB)∗ = AB, (BA)∗ = BA.

If such an operator B exists, then it is unique and we denote it by A+. It is also well-

known that an operator is Moore-Penrose invertible if and only if its range is closed

(normally solvable). In addition, note that if A is invertible then A−1 coincides with

A+.

Let PH
M denote the orthogonal projection onto the closed subspace M ⊂ H.

The following results about Moore-Penrose invertibility are well-known.

Proposition 3.1 (see [11]) The following statements are equivalent:

(i) The operator A ∈ L(H) is Moore-Penrose invertible.

(ii) The operator A∗A+ PH
kerA is invertible.

(iii) The operator AA∗ + PH
kerA∗ is invertible.

Moreover, if one of the above conditions is fulfilled then

A+ = (A∗A+ PH
kerA)

−1A∗ = A∗(AA∗ + PH
kerA∗)−1.

Moore-Penrose invertibility can be defined for elements in a C∗-algebra.

Proposition 3.2 (see [7, 11]) (i) An element A of a C∗-algebra with identity is

Moore-Penrose invertible if and only if the element AA∗ is invertible or if 0 is

an isolated point of the spectrum (denoted by sp) of A∗A. If this condition is

fulfilled, then ∥A+∥ = min{sp(AA∗ \ {0})}.

(ii) C∗-subalgebras of C∗-algebras with identity are inverse closed with respect to

Moore-Penrose invertibility.

A sequence of operators (An) satisfying AnPn −→ A and A∗
nPn −→ A∗ is said to

be Moore-Penrose stable if

sup
n≥1

∥A+
n ∥ <∞.

Recall that A+
n exists for all n because dim ImPn <∞. Theorem 2.12 in [7] states that

if (An) is Moore-Penrose stable, then A is Moore-Penrose invertible and A+
n −→ A+,

strongly as n −→ ∞.

We will apply these results to the C∗-algebra FT2 given previously, and to some

C∗-subalgebras of it. In particular, we are going to study the Moore-Penrose stability

of the Fredholm sequence (An) defined in (29).
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Proposition 3.3 (Cf. Proposition 6.9 in [7]) Let a, b ∈ [PC(T)]2×2 and suppose

that (Ln(aIT + bST)Pn) is a Fredholm sequence (equivalently, suppose aIT + bST and

ãIT+ b̃ST to be Fredholm operators). If ker(aIT+bST) ⊆ ImPn0 and ker(ãIT+ b̃ST) ⊆
ImPn0 for a certain n0, then

P ImPn
ker(Ln(aIT+bST)Pn)

= P
[L2(T,w)]2

ker(aIT+bST)
+WnP

[L2(T,w)]2

ker(ãIT+b̃ST)
Wn

for all sufficiently large n.

From this result, the connection between the k-splitting property and the Moore-

Penrose stability is clear:

dimkerAn = dimkerW 1(An) + dimkerW 2(An).

The above proposition implies that (An) is a Moore-Penrose stable sequence, and

from Proposition 6.5 in [7] we have that the sequence A∗
nAn + P ImPn

ker(Ln(aIT+bST)Pn)
is

stable and the sequence

Bn :=
(
AnA

∗
n + P ImPn

ker(Ln(aIT+bST)Pn)

)−1

A∗
n, for all sufficiently large n,

is the Moore-Penrose inverse An.

Finally, we are now in conditions to provide the explicit Moore-Penrose inverse of

the operator A defined on (3) with the Carleman shift operator J as in (4) or in (5).

Theorem 3.2 Let us suppose A to be Fredholm. Moreover, assume that for a certain

n0, ker(DT) ⊆ ImPn0 and ker(D̃T) ⊆ ImPn0 , where the operator DT is given as in

Theorem 2.1 in the case of J to be the shift operator (4) and as in Theorem 2.2 for J

in (5) with, in each case, D̃T = ũTIT+ ṽTST, where for a function a ∈ [PC(T)]2×2 we

have ã(t) = a
(
1
t

)
, t ∈ T. Then, the operator A is Moore-Penrose invertible by A+,

where:

(1) For the shift operator (Jφ)(t) = φ(−t),

A+ =MKGN

[(
D∗

TDT + P
[L2(T,w)]2

kerDT

)−1

D∗
T

]
N−1G−1K−1M−1,

with A+ ∈ L(L2(T, w)) and w ∈ Ae2(T). We recall that the explicit form of the

operators M±1, K, G±1, N±1 and DT are given in (7)–(12);

(2) In the case of the shift operator (Jφ)(t) = 1
tφ
(
1
t

)
, we have

A+ = B−1MR+KRR+NR+ Rest|
[L2(R+,|x|−1/4)]

B2

[(
D∗

TDT + P
[L2(T,γ)]2
kerDT

)−1

D∗
T

]
B−1

2 N−1
R+
K−1M−1

R+
B,
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with A+ ∈ L(L2(T)) and γ is the weight γ(t) =
∣∣∣i 1+t1−t

∣∣∣−1/4

. The explicit form of the

operators B±1,M±1
R+
, N±1

R+
,K,RR+

, B±1
2 and DT are given in (15)–(21) and (23).

Proof. SinceA is a Fredholm operator, thenA is a Moore-Penrose invertible operator.

Also, from Theorem 2.1 (Theorem 2.2) we have that A is equivalent (equivalent after

extension) to the operator DT with coefficients uT and vT depending of the shift J .

On the other hand, we know that (An) = (Ln(uTIT + vTST)Pn) converge strongly to

DT, as n −→ ∞. Also, the hypothesis that ker(DT) ⊆ ImPn0 and ker(D̃T) ⊆ ImPn0

for a certain n0, allow us to apply Proposition 3.3. Thus, we have that (An) is a

Moore-Penrose stable sequence with Moore-Penrose inverse

Bn := (AnA
∗
n + P ImPn

ker(Ln(aIT+bST)Pn)
)−1A∗

n.

Moreover, Bn −→ D+
T .

The explicit form of A+ is obtained from Bn, as n −→ ∞, and from the operators

given in Theorem 2.1, for the shift operator J given on (4), and Theorem 2.2 for J

defined on (5) (being fundamental in this last step to have in complete explicit form

the corresponding operator relations).
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