Moore-Penrose invertibility of singular integral operators with Carleman shift

L. P. Castro and E. M. Rojas

Abstract

We will take profit of explicit operator relations and a certain algebraization of the stability to obtain the Moore-Penrose inverse of singular integral operators with shift, having piecewise continuous functions as coefficients. This is considered for two different shifts: the reflection operator on the complex unit circle, and a weighted Carleman shift (the so-called flip operator).

Keywords: Moore-Penrose inverse, singular integral operator, shift, Fredholm property.

1. Introduction

Let $PC(\mathbb{T})$ stand for the space of all essentially bounded piecewise continuous functions on the unit circle $\mathbb{T} := \{t \in \mathbb{C} : |t| = 1\}$, i.e., functions $\varphi \in L^{\infty}(\mathbb{T})$ for which the one-sided limits

$$\varphi^{\pm}(t) := \lim_{\varepsilon \to 0^{\pm}} \varphi(t e^{i\varepsilon})$$

exist for each $t \in \mathbb{T}$. Thus, as usual, $[PC(\mathbb{T})]^{2\times 2}$ will denote the C^* -algebra of all 2×2 -matrices with entries from $PC(\mathbb{T})$. In addition, let $L^2(\mathbb{T}, w)$ be the weighted Lebesgue space over \mathbb{T} equipped with the norm

$$\|f\|_{2,w} := \|wf\|_2, \tag{1}$$

where $\|\cdot\|_2$ denotes the usual norm of the Hilbert space $L^2(\mathbb{T})$. We will assume that all the weights $w: \mathbb{T} \longrightarrow [0, +\infty]$ are such that $w, w^{-1} \in L^2(\mathbb{T})$, and

$$c_w := \sup_{t \in \mathbb{T}} \sup_{\varepsilon > 0} \left(\frac{1}{\varepsilon} \int_{\mathbb{T}(t,\varepsilon)} w(\tau)^2 |d\tau| \right)^{1/2} \left(\frac{1}{\varepsilon} \int_{\mathbb{T}(t,\varepsilon)} w(\tau)^{-2} |d\tau| \right)^{1/2} < \infty, \quad (2)$$

where

$$\mathbb{T}(t,\varepsilon) := \{ \tau \in \mathbb{T} : |\tau - t| < \varepsilon \}, \qquad \varepsilon > 0.$$

The property (2) is the so-called Hunt–Muckenhoupt–Wheeden condition, and $A_2(\mathbb{T})$ is referred to as the set of Hunt–Muckenhoupt–Wheeden weights. The space $[L^2(\mathbb{T}, w)]^2$

refers to the Hilbert space of all column-vectors of length 2 with components from $L^2(\mathbb{T}, w)$.

The Cauchy singular integral operator on \mathbb{T} is defined almost everywhere by

$$(S_{\mathbb{T}}f)(t) = \frac{1}{\pi i} \text{p.v.} \int_{\mathbb{T}} \frac{f(\tau)}{\tau - t} d\tau.$$

If the weight w satisfies condition (2), then $S_{\mathbb{T}} \in \mathcal{L}(L^2(\mathbb{T}, w))$. Here, $\mathcal{L}(L^2(\mathbb{T}, w))$ stands for the C^* -algebra of all bounded and linear operators acting from $L^2(\mathbb{T}, w)$ into $L^2(\mathbb{T}, w)$.

In the present work we deal with the singular integral operators

$$\mathcal{A} = a_0 I_{\mathbb{T}} + b_0 S_{\mathbb{T}} + a_1 J + b_1 S_{\mathbb{T}} J,\tag{3}$$

with coefficients $a_0, b_0, a_1, b_1 \in PC(\mathbb{T})$, a shift operator J satisfying the Carleman condition (i.e., $J^2 = I$) which can be either the reflection operator (defined by a rotation action of π amplitude on the unit circle \mathbb{T}) or the flip operator (which is a weighted backward Carleman shift).

The reflection operator has the form

$$(J\varphi)(t) = \varphi(-t), \ t \in \mathbb{T},$$
(4)

in which case \mathcal{A} is defined on the weighted Lebesgue space $L^2(\mathbb{T}, w)$, with weights w belonging to $A_2^e(\mathbb{T}) := \{ w \in A_2(\mathbb{T}) : w(-t) = w(t), t \in \mathbb{T} \}.$

On the other hand, the flip operator is given by

$$(J\varphi)(t) = \frac{1}{t}\varphi\left(\frac{1}{t}\right), \ t \in \mathbb{T},$$
(5)

and for this case the operator \mathcal{A} is assumed to be defined in $L^2(\mathbb{T})$.

Fredholm criteria for the operators \mathcal{A} with shift operators as in (4) or (5) are already known (see [3, 4, 5]). The main goal of this paper is to obtain the so-called *Moore-Penrose inverse* of \mathcal{A} . This inverse is closely related to the *k*-splitting property, and some evidence of this will be also exposed.

To achieve our aim, we will use the following notions. We recall that two bounded linear operators $T: X_1 \longrightarrow X_2$ and $S: Y_1 \longrightarrow Y_2$ acting between Banach spaces are called *equivalent* (cf., [1], [6]) if there are two boundedly invertible linear operators, $E: Y_2 \to X_2$ and $F: X_1 \to Y_1$, such that

$$T = E S F \tag{6}$$

holds. The notion of equivalence after extension relation also plays here a significant role. We say that two operators T and S are equivalent after extension if two additional Banach spaces Z and W exist in such a way that $T \oplus I_Z$ and $S \oplus I_W$ are equivalent operators. In the presence of the particular case $E = F^{-1}$ in (6), we will say that we have a *similarity relation* between the operators T and S. It follows from (6) that if two operators are equivalent (or equivalent after extension), then their kernels have the same dimension.

The paper is organized as follows: In section 2, we describe an equivalence relation (proved in [4]) between the operator \mathcal{A} with the reflection shift operator (4) and a matrix singular integral operator $\mathcal{D}_{\mathbb{T}}$ without shift, as well as an equivalence after extension relation between the operator \mathcal{A} with the flip operator J, defined in (5), and a new operator $\mathcal{D}_{\mathbb{T}}$ without flip. This last equivalence after extension relation was proved in [5]. In the final section, the so-called *projection methods*, as well as the notions of *singular values* and *stability* are considered in a general setting. These previous results and notions will be useful to relate and obtain, in explicit form, the Moore-Penrose inverse of the singular integral operator presented in (3).

2. Operator relations

In the articles [4] and [5], it was obtained a direct relation between the operator \mathcal{A} and a matrix singular integral operator without additional associated operators: for the reflection shift operator (4) it is a similarity transformation $F\mathcal{A}F^{-1}$ and for the flip operator (5) it is a transformation after extension by two invertible operators $G\mathcal{A}H$. For the reader convenience, we will formulate these results below.

First we will consider the case of the reflection shift operator $(J\varphi)(t) = \varphi(-t)$, $t \in \mathbb{T}$. Let $w \in A_2^e(\mathbb{T})$ and $\mathbb{T}_+ := \{t \in \mathbb{T} : 0 < \arg t < \pi\}$. We define the following operators:

$$M : [L^{2}(\mathbb{T}_{+}, w)]^{2} \longrightarrow L^{2}(\mathbb{T}, w)$$
$$M\begin{pmatrix} \varphi_{1} \\ \varphi_{2} \end{pmatrix} = \ell_{0}\varphi_{1} + J^{-1}\ell_{0}\varphi_{2}, \tag{7}$$

where ℓ_0 denotes the zero extension operator from \mathbb{T}_+ to \mathbb{T} (in the corresponding spaces). Note that $M \in \mathcal{L}([L^2(\mathbb{T}_+, w)]^2, L^2(\mathbb{T}, w))$). Moreover,

$$M^{-1}\varphi = \begin{pmatrix} r_{\mathbb{T}_{+}}\varphi \\ r_{\mathbb{T}_{+}}J\varphi \end{pmatrix}, \tag{8}$$

where $r_{\mathbb{T}_+} : L^2(\mathbb{T}, w) \longrightarrow L^2(\mathbb{T}_+, w)$ denotes the restriction operator $r_{\mathbb{T}_+} \varphi = \varphi_{|\mathbb{T}_+}$. The operator M^{-1} is linear and bounded from $L^2(\mathbb{T}, w)$ onto $[L^2(\mathbb{T}_+, w)]^2$, i.e., $M^{-1} \in \mathcal{L}(L^2(\mathbb{T}, w), [L^2(\mathbb{T}_+, w)]^2)$.

We will also make use of the matrix operators

$$K^{\pm 1} = \frac{1}{\sqrt{2}} \begin{pmatrix} I & I \\ I & -I \end{pmatrix} \in \mathcal{L}([L^2(\mathbb{T}_+, w)]^2), \tag{9}$$

and

$$G^{\pm 1}(t) = \text{diag}(1, t^{\pm 1}).$$
(10)

Finally, we will consider the operator N and its inverse N^{-1} defined by

$$N(\zeta)(t) = \zeta(t^2), \qquad N^{-1}(\zeta)(t) = \zeta(t^{1/2}), \tag{11}$$

with $N \in \mathcal{L}([L^2(\mathbb{T}, w)]^2, [L^2(\mathbb{T}_+, w)]^2)$, and $N^{-1} \in \mathcal{L}([L^2(\mathbb{T}_+, w)]^2, [L^2(\mathbb{T}, w)]^2)$.

The operators above take part in the construction of the following equivalence relation.

Theorem 2.1 ([4, Theorem 2.2]) The initial singular integral operator with reflection $(J\varphi)(t) = \varphi(-t), t \in \mathbb{T}$,

$$\mathcal{A} = a_0 I_{\mathbb{T}} + b_0 S_{\mathbb{T}} + a_1 J + b_1 S_{\mathbb{T}} J$$

(acting between $L^2(\mathbb{T}, w)$ spaces) is equivalent to the matrix singular integral operator (without shift)

$$\mathcal{D}_{\mathbb{T}} = u_{\mathbb{T}} I_{\mathbb{T}} + v_{\mathbb{T}} S_{\mathbb{T}}, \qquad \mathcal{D}_{\mathbb{T}} \in \mathcal{L}[L^2(\mathbb{T}, w)]^2.$$

The operator equivalence relation between \mathcal{A} and $\mathcal{D}_{\mathbb{T}}$ is presented in the form of the following similarity transformation

$$F^{-1}\mathcal{A}F = \mathcal{D}_{\mathbb{T}},\tag{12}$$

where

$$F = MKGN \in \mathcal{L}([L^{2}(\mathbb{T}, w)]^{2}, L^{2}(\mathbb{T}, w)),$$

$$F^{-1} = N^{-1}G^{-1}K^{-1}M^{-1} \in \mathcal{L}(L^{2}(\mathbb{T}, w), [L^{2}(\mathbb{T}, w)]^{2})$$

and the explicit form of the operators $M^{\pm 1}$, $K^{\pm 1}$, $G^{\pm 1}$, $N^{\pm 1}$ is given in (7), (8), (9), (10) and (11).

The connection between the coefficients of the operators $\mathcal A$ and $\mathcal D_{\mathbb T}$ is given by the formulas:

$$u_{\mathbb{T}}(t) = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ t^{-1/2} & -t^{-1/2} \end{pmatrix} u_1(t^{1/2}) \begin{pmatrix} 1 & t^{1/2} \\ 1 & -t^{1/2} \end{pmatrix}$$
(13)

and

$$v_{\mathbb{T}}(t) = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ t^{-1/2} & -t^{-1/2} \end{pmatrix} v_1(t^{1/2}) \begin{pmatrix} 1 & t^{1/2} \\ 1 & -t^{1/2} \end{pmatrix}.$$
 (14)

where

$$u_1(t) = \begin{pmatrix} r_{\mathbb{T}_+} a_0(t) & r_{\mathbb{T}_+} a_1(t) \\ r_{\mathbb{T}_+} a_0(-t) & r_{\mathbb{T}_+} a_1(-t) \end{pmatrix},$$

and

$$v_1(t) = \left(\begin{array}{cc} r_{{}^{\rm T}_+} b_0(t) & r_{{}^{\rm T}_+} b_1(t) \\ r_{{}^{\rm T}_+} b_0(-t) & r_{{}^{\rm T}_+} b_1(-t) \end{array} \right).$$

Now, we will formulate an equivalence relation for the case of the flip operator. Consider the following operators: $B: L^2(\mathbb{T}) \to L^2(\mathbb{R})$ defined by

$$(B\phi)(x) = \frac{1}{x+i}\phi\left(\frac{x-i}{x+i}\right), \quad x \in \mathbb{R}$$
(15)

which inverse is

$$(B^{-1}\psi)(t) = \frac{i2^{1/2}}{1-t}\psi\left(i\frac{1+t}{1-t}\right), \quad t \in \mathbb{T} \setminus \{1\},$$
(16)

and the operator $M_{\mathbb{R}_+}$ given by the rule

$$M_{\mathbb{R}_{+}} \begin{pmatrix} \varphi_{1}(x) \\ \varphi_{2}(x) \end{pmatrix} = \varphi(x) := \begin{cases} \varphi_{1}(x), & x \in \mathbb{R}_{+} \\ \varphi_{2}(-x), & x \in \mathbb{R}_{-} \end{cases}$$
(17)

(where $\mathbb{R}_+ := (0 + \infty)$ and $\mathbb{R}_- := (-\infty, 0)$); the matrix operators

$$K^{\pm 1} = \frac{1}{\sqrt{2}} \begin{pmatrix} I & I \\ I & -I \end{pmatrix} \in \mathcal{L}([L^2(\mathbb{R}_+)]^2),$$
(18)

as well the operator

$$(N_{\mathbb{R}_{+}}\varphi)(x) = \varphi(x^{2}), \qquad N_{\mathbb{R}_{+}} \in \mathcal{L}([L^{2}(\mathbb{R}_{+},|x|^{-1/4})]^{2}, [L^{2}(\mathbb{R}_{+})]^{2}), \tag{19}$$

and the operator $R_{\mathbb{R}_+}$ given by

$$R_{\mathbb{R}_+} = \begin{pmatrix} S_{\mathbb{R}_+} + U_{1,\mathbb{R}_+} & 0\\ 0 & I_{\mathbb{R}_+} \end{pmatrix} \in \mathcal{L}([L^2(\mathbb{R}_+)]^2)$$
(20)

where

$$(S_{\mathbb{R}_+}f)(x) = \frac{1}{\pi i} \int_{\mathbb{R}_+} \frac{f(u)}{u-x} du$$

and

$$(U_{1,\mathbb{R}_{+}}f)(x) = \frac{1}{\pi i} \int_{\mathbb{R}_{+}} \frac{f(u)}{u+x} du, \ x \in \mathbb{R}_{+}.$$

Note that $S_{\mathbb{R}_+} + U_{1,\mathbb{R}_+}$ is an invertible operator and its inverse is given by $S_{\mathbb{R}_+} - U_{1,\mathbb{R}_+}$. Thus, $R_{\mathbb{R}_+}$ is also an invertible operator.

All these operators are used in the following operator equivalence relation which is given in explicit form

$$\mathcal{GAV} = D_{\mathbb{R}_+},$$

with operators \mathcal{G} and \mathcal{V} defined by

$$\begin{aligned} \mathcal{G} &= N_{\mathbb{R}_{+}}^{-1}K^{-1}M_{\mathbb{R}_{+}}^{-1}B \in \mathcal{L}(L^{2}(\mathbb{T}), [L^{2}(\mathbb{R}_{+}, |x|^{-1/4})]^{2}), \\ \mathcal{V} &= B^{-1}M_{\mathbb{R}_{+}}KR_{\mathbb{R}_{+}}N_{\mathbb{R}_{+}} \in \mathcal{L}([L^{2}(\mathbb{R}_{+}, |x|^{-1/4})]^{2}, L^{2}(\mathbb{T})), \end{aligned}$$

and the explicit form of the operators $B^{\pm 1}$, $M_{\mathbb{R}_+}^{\pm 1}$, $K^{\pm 1}$, $N_{\mathbb{R}_+}^{\pm 1}$ and $R_{\mathbb{R}_+}$ is given in (15)–(20). The operator $D_{\mathbb{R}_+}$ has the form

$$D_{\mathbb{R}_+} = u_{\mathbb{R}_+} I_{\mathbb{R}_+} + v_{\mathbb{R}_+} S_{\mathbb{R}_+}.$$

The relation between the coefficients $u_{\mathbb{R}_+}$ and $v_{\mathbb{R}_+}$ of this operator $D_{\mathbb{R}_+}$ and the coefficients of the operator \mathcal{A} is given by the formulas:

$$\begin{split} u_{\mathbb{R}_{+}}(x) &= \\ \frac{1}{2} \begin{pmatrix} (a_{1}(y) + b_{1}(y)) - (a_{1}(-y) + b_{1}(-y)) & (a_{0}(y) + b_{0}(y)) - (a_{0}(-y) + b_{0}(-y)) \\ (a_{1}(y) + b_{1}(y)) + (a_{1}(-y) + b_{1}(-y)) & (a_{0}(y) + b_{0}(y)) + (a_{0}(-y) + b_{0}(-y)) \end{pmatrix} \\ v_{\mathbb{R}_{+}}(x) &= \\ \frac{1}{2} \begin{pmatrix} (a_{0}(y) - b_{0}(y)) + (a_{0}(-y) - b_{0}(-y)) & (a_{1}(y) - b_{1}(y)) + (a_{1}(-y) - b_{1}(-y)) \\ (a_{0}(y) - b_{0}(y)) - (a_{0}(-y) - b_{0}(-y)) & (a_{1}(y) - b_{1}(y)) - (a_{1}(-y) - b_{1}(-y)) \end{pmatrix} \end{pmatrix} \end{split}$$

where

$$y = \frac{x^{1/2} - i}{x^{1/2} + i}, \qquad x \in \mathbb{R}_+.$$

Next, the operator $D_{\mathbb{R}_+}$ is extended by the identity into the $[L^2(\mathbb{R}, |x|^{-1/4})]^2$ space. This is in fact an equivalence after extension relation (see [1]) applied to $D_{\mathbb{R}_+}$ where the resulting operator has the form:

$$D_{\mathbb{R}} := \begin{pmatrix} D_{\mathbb{R}_{+}} & 0\\ 0 & I_{[L^{2}(\mathbb{R}_{-},|x|^{-1/4})]^{2}} \end{pmatrix} \in \mathcal{L}([L^{2}(\mathbb{R},|x|^{-1/4})]^{2}).$$

In addition, the operator $D_{\mathbb{R}}$ can also be written in the form

$$D_{\mathbb{R}} = u_{\mathbb{R}} I_{\mathbb{R}} + v_{\mathbb{R}} S_{\mathbb{R}}$$

where

$$u_{\mathbb{R}} = \chi_{\mathbb{R}_{-}} + \ell_0 u_{\mathbb{R}_{+}}, \qquad v_{\mathbb{R}} = \ell_0 v_{\mathbb{R}_{+}},$$

with ℓ_0 being the zero extension operator, and where $\chi_{\mathbb{R}_-}$ is the characteristic function on \mathbb{R}_- .

Now we pass from $\mathcal{D}_{\mathbb{R}}$ to a singular integral operator $\mathcal{D}_{\mathbb{T}}$ using the isometric isomorphism

$$B_2 := \operatorname{diag}(B, B) \tag{21}$$

from $[L^2(\mathbb{R},|x|^{-1/4})]^2$ onto $[L^2(\mathbb{T},\gamma)]^2$ with the (Khvedelidze) weight

$$\gamma(t) = \left| i \frac{1+t}{1-t} \right|^{-1/4}$$

In explicit form:

$$\mathcal{D}_{\mathbb{T}} := B_2^{-1} \mathcal{D}_{\mathbb{R}} B_2 = u_{\mathbb{T}} I_{\mathbb{T}} + v_{\mathbb{T}} S_{\mathbb{T}},$$

with

$$u_{\mathbb{T}}I_{\mathbb{T}} = B_2^{-1}u_{\mathbb{R}}B_2, \qquad v_{\mathbb{T}}I_{\mathbb{T}} = B_2^{-1}v_{\mathbb{R}}B_2.$$
 (22)

89

More precisely, $u_{\mathbb{T}} = \text{diag}(B_0, B_0)u_{\mathbb{R}}$, and $v_{\mathbb{T}} = \text{diag}(B_0, B_0)v_{\mathbb{R}}$, where

$$(B_0a)(t) = a\left(i\frac{1+t}{1-t}\right), \quad t \in \mathbb{T} \setminus \{1\}.$$

Theorem 2.2 ([5, Proposition 1]) The singular integral operator

$$\mathcal{A} = a_0 I_{\mathbb{T}} + b_0 S_{\mathbb{T}} + a_1 J + b_1 S_{\mathbb{T}} J$$

(acting on the space $L^2(\mathbb{T})$) with Carleman shift operator $(J\varphi)(t) = \frac{1}{t}\varphi\left(\frac{1}{t}\right), t \in \mathbb{T}$, is equivalent after extension to the matrix singular integral operator

$$\mathcal{D}_{\mathbb{T}} = u_{\mathbb{T}} I_{\mathbb{T}} + v_{\mathbb{T}} S_{\mathbb{T}}, \quad \mathcal{D}_{\mathbb{T}} \in \mathcal{L}([L^2(\mathbb{T}, \gamma)]^2),$$
(23)

where $\gamma(t) = |i\frac{1+t}{1-t}|^{-1/4}$, and $u_{\mathbb{T}} = \text{diag}(B_0, B_0)u_{\mathbb{R}}$, and $v_{\mathbb{T}} = \text{diag}(B_0, B_0)v_{\mathbb{R}}$.

3. The Moore-Penrose invertibility of \mathcal{A}

We will start by introducing a general framework which will then applied to our operator \mathcal{A} .

Let F be a finite dimensional Banach space with dim F = m. We recall that the k-th approximation number $(k \in \{0, 1, ..., m\})$ of an operator $A \in \mathcal{L}(F)$ is defined by

$$s_k(A) = \operatorname{dist}(A, \mathcal{F}_{m-k}) := \inf\{ \|A - F\| : F \in \mathcal{F}_{m-k} \},\$$

where \mathcal{F}_{n-k} denotes the collection of all operators (or matrices from $\mathbb{C}^{n \times n}$) having the dimension of the range equal to at most n - k. It is clear that

$$0 \le s_1(A) \le \dots \le s_m(A) = ||A||_{\mathcal{L}(F)}.$$

Notice that the approximation numbers can be also defined as the singular values of a square matrix $A_n \in \mathbb{C}^{nN \times nN}$ which are the square roots of the spectral points of $A_n^*A_n$, where A_n^* means the adjoint matrix of A_n .

Definition 3.1 A sequence (A_n) of matrices $nN \times nN$ is said to have the k-splitting property if there is an integer $k \ge 0$ such that

$$\lim_{n \to \infty} s_k(A_n) = 0 \quad \text{and} \quad \liminf_{n \to \infty} s_{k+1}(A_n) > 0.$$

The number k is called the splitting number. Alternatively, we say the singular values (computed via $A_n^*A_n$) of a sequence (A_n) of $k(n) \times l(n)$ matrices A_n have the splitting property if there exist a sequence $c_n \to 0$ ($c_n \ge 0$) and a number d > 0 such that they are contained in $[0, c_n] \cup [d, \infty)$ for all n. Moreover, the singular values of A_n are said to meet the k-splitting property if, in addition, for all sufficiently large n, exactly k singular values of A_n lie in $[0, c_n]$.

In general terms, given a bounded linear operator A on a Banach space X ($A \in \mathcal{L}(X)$), and an element f of X, let us consider the abstract operator equation

$$A\varphi = f. \tag{24}$$

For the approximate solution of this equation, we choose to approximate closed subspaces X_n in which the approximate solutions φ_n of (24) will be sought. In practice, the X_n spaces usually have finite dimension but we will not require this assumption. We will assume that X_n are ranges of certain projection operators $L_n : X \longrightarrow X_n$ so that these projections converge strongly to the identity operator: $s - \lim_{n \to \infty} L_n = I$. This strong convergence implies that $\bigcup_{n=1}^{\infty} X_n$ is dense in X.

Having fixed subspaces X_n , we choose convenient linear operators $A_n : X_n \longrightarrow X_n$ and consider in the place of (24) the equations

$$A_n\varphi_n = L_n f, \quad n = 1, 2, \dots, \tag{25}$$

with their solutions sought in $X_n = \text{Im } L_n$.

A sequence (A_n) of operators $A_n \in \mathcal{L}(\operatorname{Im} L_n)$ is an approximation method for $A \in \mathcal{L}(X)$ if $A_n L_n$ converges strongly to A as $n \to \infty$.

Note that even if (A_n) is an approximation method for A, we do not yet know anything about the solvability of the equations (25) and about the relations between (eventual) solutions φ_n of (25) and the (possible) solution φ of (24).

The approximation method (A_n) for A is *applicable* if there exists a number n_0 such that the equations (25) possess unique solutions φ_n for every $n \ge n_0$ and every right-hand side $f \in X$, and if these solutions converge in the norm of X to a solution of (24). An equivalent characterization of applicable approximation methods is the notion of *stability*, where a sequence (A_n) of operators $A_n \in \mathcal{L}(\operatorname{Im} L_n)$ is called *stable* if there exists a number n_0 such that the operators A_n are invertible for every $n \ge n_0$ and if the norms of their inverses are uniformly bounded:

$$\sup_{n\geq n_0} \|A_n^{-1}L_n\| < \infty.$$

Let (L_n) be a sequence of projections converging strongly to the identity $I \in \mathcal{L}(X)$. The idea of any projection method for the approximate solution of (24) is to choose a further sequence (R_n) of projections which also converge strongly to the identity and which satisfy $\operatorname{Im} R_n = \operatorname{Im} L_n$. Thus, we choose $A_n = R_n A L_n : \operatorname{Im} L_n \longrightarrow \operatorname{Im} L_n$ as the approximate operators of A. In fact, Lemma 1.5 in [7] proves that $(R_n A L_n)$ is indeed an approximate method for A.

In the most interesting case of X being an infinite dimensional Banach space, a sequence (X_n) of finite dimensional subspaces of X needs to be considered. Moreover, we assume that there is a sequence (L_n) of projections from X onto X_n with strong limit $I \in X$ as $n \to \infty$. Let \mathcal{F} refer to the set of all sequences $(A_n)_{n=0}^{\infty}$ of operators

 $A_n \in \mathcal{L}(\operatorname{Im} L_n)$ which are uniformly bounded: $\sup\{||A_nL_n|| : n \ge 0\} < \infty$. The "algebraization" of \mathcal{F} is given by the natural operations

$$\lambda_1(A_n) + \lambda_2(B_n) := (\lambda_1 A_n + \lambda_2 B_n), \quad (A_n)(B_n) := (A_n B_n)$$
(26)

and

$$||(A_n)||_{\mathcal{F}} := \sup\{||A_nL_n|| : n \ge 0\}$$

which make \mathcal{F} to be an initial Banach algebra with identity $(I_{|\operatorname{Im} L_n})$. The set \mathcal{I} of all sequences (G_n) in \mathcal{F} with $\lim_{n\to\infty} ||G_nL_n|| = 0$ is a closed two sided ideal in \mathcal{F} . The Kozak's Theorem (Theorem 1.5 in [7]) establish that a sequence $(A_n) \in \mathcal{F}$ is stable if and only if its coset $(A_n) + \mathcal{I}$ is invertible in the quotient algebra \mathcal{F}/\mathcal{I} .

If instead of a Banach space X we consider a Hilbert space \mathcal{H} and L_n to be the orthogonal projections P_n from \mathcal{H} onto \mathcal{H}_n , then $(A_n)^* = (A_n^*)$ defines an involution in \mathcal{F} which makes \mathcal{F} a C^* -algebra. Note that in this case the approximation numbers of an operator $A_n \in \mathcal{L}(\mathcal{H}_n)$ are just the singular values of A_n .

Let further T be a (possible infinite) index set and suppose that, for every $t \in T$, we are given an infinite dimensional Hilbert space \mathcal{H}^t with identity operator I^t as well as a sequence (E_n^t) of partial isometries $E_n^t : \mathcal{H}^t \longrightarrow \mathcal{H}$ such that the initial projections P_n^t of E_n^t converge strongly to I^t as $n \to \infty$, the range projection of E_n^t is P_n and the separation condition

$$(E_n^s)^* E_n^t \longrightarrow 0 \quad \text{weakly as } n \to \infty$$
 (27)

holds for every $s, t \in T$ with $s \neq t$. Recall that an operator $E : \mathcal{H}' \longrightarrow \mathcal{H}''$ is a partial isometry if $EE^*E = E$ and that E^*E and EE^* are orthogonal projections (which are called the initial and the range projections of E, respectively). The restriction of E to $\operatorname{Im}(E^*E)$ is an isometry from $\operatorname{Im}(E^*E)$ onto $\operatorname{Im}(EE^*) = \operatorname{Im} E$. We write E_{-n}^t instead of $(E_n^t)^*$, and set $\mathcal{H}_n := \operatorname{Im} P_n$ and $\mathcal{H}_n^t := \operatorname{Im} P_n^t$.

Let \mathcal{F}^T stand for the set of all sequences $(A_n) \in \mathcal{F}$ for which the strong limits

$$s - \lim_{n \to \infty} E_{-n}^t A_n E_n^t$$
 and $s - \lim_{n \to \infty} (E_{-n}^t A_n E_n^t)^*$

exist for every $t \in T$, and define mappings $W^t : \mathcal{F}^T \longrightarrow \mathcal{L}(\mathcal{H}^t)$ by

$$W^t(A_n) := s - \lim_{n \to \infty} E^t_{-n} A_n E^t_n.$$

The algebra \mathcal{F}^T is a C^* -subalgebra of \mathcal{F} which contains the identity, and W^t are *homomorphisms. Moreover, \mathcal{F}^T is a *standard* algebra. This means that any sequence $(A_n) \in \mathcal{F}^T$ is stable if and only if all the operators $W^t(A_n)$ are invertible.

The separation condition (27) ensures that, for every $t \in T$ and every compact operator $K^t \in \mathcal{K}(\mathcal{H}^t)$, the sequence $(E_n^t K^t E_{-n}^t)$ belongs to the algebra \mathcal{F}^T , and for all $s \in T$

$$W^{s}(E_{n}^{t}K^{t}E_{-n}^{t}) = \begin{cases} K^{t} & \text{if } s = t\\ 0 & \text{if } s \neq t. \end{cases}$$
(28)

Conversely, the above identity implies the separation condition (27). Moreover, the ideal \mathcal{I} belongs to \mathcal{F}^T . So we can introduce the smallest closed ideal \mathcal{J}^T of \mathcal{F}^T which contains all sequences $(E_n^t K^t E_{-n}^t)$ with $t \in T$ and $K^t \in \mathcal{K}(\mathcal{H}^t)$, as well as all sequences $(G_n) \in \mathcal{I}$.

Corresponding to the ideal \mathcal{J}^T , we introduce a class of Fredholm sequences by calling a sequence $(A_n) \in \mathcal{F}^T$ Fredholm if the coset $(A_n) + \mathcal{J}^T$ is invertible in the quotient algebra $\mathcal{F}^T/\mathcal{J}^T$. It is also known (see [7]) that if $(A_n) \in \mathcal{F}^T$ is Fredholm, then all operators $W^t(A_n)$ are Fredholm on \mathcal{H}^t , and the number of the non-invertible operators among the $W^t(A_n)$ is finite.

We have now the possibility to recall an important result concerning standard algebras and relating some of the just presented notions.

Theorem 3.1 (see [7]) Let (A_n) be a sequence from the standard C^* -algebra \mathcal{F}^T .

(i) If the coset (A_n) + J^T is invertible in the quotient algebra F^T/J^T, then all operators W^t(A_n) are Fredholm on H^t, the number of the non-invertible operators among the W^t(A_n) is finite, and the singular values of A_n have the k-splitting property with

$$k(A_n) = \sum_{t \in T} \dim \ker W^t(A_n).$$

(ii) If $W^t(A_n)$ is not Fredholm for at least one $t \in T$, then for every integer $k \ge 0$

 $s_k(A_n) \longrightarrow 0, \quad as \quad n \longrightarrow \infty.$

An specific algebraization of the stability for the operators under study runs as follows. We start by considering the Fourier projection $P_n \in \mathcal{L}([L^2(\mathbb{T}, w)]^2)$ that in terms of the Fourier coefficients of a function $\psi \in [L^2(\mathbb{T}, w)]^2$ acts componentwise according to the rule

$$\psi = \sum_{k \in \mathbb{Z}} \psi_k t^k \longmapsto \sum_{k=-n}^n \psi_k t^k, \qquad n \in \mathbb{N}.$$

In addition, we take the Lagrange interpolation operator L_n (which is bounded in $[L^2(\mathbb{T}, w)]^2$, see for instance [2]) associated to the points

$$t_j = \exp\left(\frac{2\pi i j}{2n+1}\right), \quad j = 0, 1, \dots, 2n.$$

That is, L_n assigns to a function ψ its Lagrange interpolation polynomial $L_n \psi \in$ Im P_n , uniquely determined, on each component, by the conditions $(L_n \psi)(t_j) = \psi(t_j)$, $j = 0, 1, \ldots, 2n$. One can show that $||P_n \psi - \psi||_{2,w} \longrightarrow 0$ as $n \longrightarrow \infty$ for every $\psi \in [L^2(\mathbb{T}, w)]^2$ and in [9] it was proved (for the scalar case) that $||L_n \psi - \psi||_{2,w} \longrightarrow 0$, $n \longrightarrow \infty$. Let us now construct

$$A_n := L_n (aI_{\mathbb{T}} + bS_{\mathbb{T}})P_n, \quad n \in \mathbb{Z}_+,$$
⁽²⁹⁾

where the operator $W_n \in \mathcal{L}([L^2(\mathbb{T}, w)]^2)$ –which componentwise is the discrete version of the flip operator (5)– acts by the rule

$$W_n \psi = \sum_{k=0}^n \psi_{n-k} t^k + \sum_{k=-n}^{-1} \psi_{-n-k-1} t^k.$$

First, note that the operators W_n and P_n are related as follows:

$$W_n^2 = P_n, \quad W_n P_n = P_n W_n = W_n.$$
 (30)

On the other hand, in [7, 8, 10] it was shown that:

$$L_n a I_{\mathbb{T}} = L_n a L_n, \quad S_{\mathbb{T}} P_n = P_n S_{\mathbb{T}} P_n, \quad W_n L_n a W_n = L_n \widetilde{a} P_n \tag{31}$$

$$(L_n a P_n)^* = L_n \overline{a} P_n, \quad (P_n S_{\mathbb{T}} P_n)^* = P_n S_{\mathbb{T}} P_n \tag{32}$$

where for $a \in L^{\infty}(\mathbb{T})$,

$$\widetilde{a}(t) = a\left(\frac{1}{t}\right), \quad t \in \mathbb{T}.$$

We denote by T_2 the index set $\{1, 2\}$ and by \mathcal{F}^{T_2} the C^* -algebra of all operator sequences (A_n) , with $A_n \in \mathcal{L}(\operatorname{Im} P_n)$, for which there exist operators (*-homomorphisms) $W^1(A_n), W^2(A_n) \in \mathcal{L}([L^2(\mathbb{T}, w)]^2)$ such that

$$s - \lim_{n \to \infty} P_n A_n P_n = W^1(A_n) \text{ and } s - \lim_{n \to \infty} W_n A_n W_n = W^2(A_n)$$
$$s - \lim_{n \to \infty} (P_n A_n P_n)^* = W^1(A_n)^* \text{ and } s - \lim_{n \to \infty} (W_n A_n W_n)^* = W^2(A_n)^*.$$

Furthermore, let us introduce the subsets \mathcal{J}^1 and \mathcal{J}^2 of the C^* -algebra \mathcal{F}^{T_2} :

$$\mathcal{J}^1 = \{ (P_n K P_n) + (G_n) : K \in \mathcal{K}([L^2(\mathbb{T}, w)]^2), \|G_n\| \to \infty \}$$

$$\mathcal{J}^2 = \{ (W_n L W_n) + (G_n) : L \in \mathcal{K}([L^2(\mathbb{T}, w)]^2), \|G_n\| \to \infty \}.$$

Again, \mathcal{J}^{T_2} is the smallest closed two-sided ideal of \mathcal{F}^{T_2} which contains all sequences (J_n) such that J_n belongs to one of the ideals \mathcal{J}^t , t = 1, 2.

In the case when equation (24) is solvable, in general it is not uniquely solvable (which occurs also in the case of our operator \mathcal{A}). In Hilbert spaces a distinguished generalized solution of (24) –the *least square solution*– can be obtained as follows: among all x in a Hilbert space \mathcal{H} which minimize ||Ax - y|| choose that one with minimal ||x||. The Moore-Penrose inverse A^+ of A is such that the least square solution of Ax = y is given by $x = A^+y$. In more detail, an operator $A \in \mathcal{L}(\mathcal{H})$ is said to be *Moore-Penrose invertible* if there is an operator $B \in \mathcal{L}(\mathcal{H})$ such that

$$ABA = A$$
, $BAB = B$, $(AB)^* = AB$, $(BA)^* = BA$.

If such an operator B exists, then it is unique and we denote it by A^+ . It is also wellknown that an operator is Moore-Penrose invertible if and only if its range is closed (normally solvable). In addition, note that if A is invertible then A^{-1} coincides with A^+ .

Let $P_M^{\mathcal{H}}$ denote the orthogonal projection onto the closed subspace $M \subset \mathcal{H}$.

The following results about Moore-Penrose invertibility are well-known.

Proposition 3.1 (see [11]) The following statements are equivalent:

- (i) The operator $A \in \mathcal{L}(\mathcal{H})$ is Moore-Penrose invertible.
- (ii) The operator $A^*A + P^{\mathcal{H}}_{\ker A}$ is invertible.
- (iii) The operator $AA^* + P^{\mathcal{H}}_{\ker A^*}$ is invertible.

Moreover, if one of the above conditions is fulfilled then

$$A^{+} = (A^{*}A + P_{\ker A}^{\mathcal{H}})^{-1}A^{*} = A^{*}(AA^{*} + P_{\ker A^{*}}^{\mathcal{H}})^{-1}.$$

Moore-Penrose invertibility can be defined for elements in a C^* -algebra.

- **Proposition 3.2 (see [7, 11])** (i) An element A of a C^{*}-algebra with identity is Moore-Penrose invertible if and only if the element AA^* is invertible or if 0 is an isolated point of the spectrum (denoted by sp) of A^*A . If this condition is fulfilled, then $||A^+|| = \min\{\operatorname{sp}(AA^* \setminus \{0\})\}.$
- (ii) C*-subalgebras of C*-algebras with identity are inverse closed with respect to Moore-Penrose invertibility.

A sequence of operators (A_n) satisfying $A_nP_n \longrightarrow A$ and $A_n^*P_n \longrightarrow A^*$ is said to be Moore-Penrose stable if

$$\sup_{n\geq 1}\|A_n^+\|<\infty.$$

Recall that A_n^+ exists for all n because dim Im $P_n < \infty$. Theorem 2.12 in [7] states that if (A_n) is Moore-Penrose stable, then A is Moore-Penrose invertible and $A_n^+ \longrightarrow A^+$, strongly as $n \longrightarrow \infty$.

We will apply these results to the C^* -algebra \mathcal{F}^{T_2} given previously, and to some C^* -subalgebras of it. In particular, we are going to study the Moore-Penrose stability of the Fredholm sequence (A_n) defined in (29).

Proposition 3.3 (Cf. Proposition 6.9 in [7]) Let $a, b \in [PC(\mathbb{T})]^{2\times 2}$ and suppose that $(L_n(aI_{\mathbb{T}} + bS_{\mathbb{T}})P_n)$ is a Fredholm sequence (equivalently, suppose $aI_{\mathbb{T}} + bS_{\mathbb{T}}$ and $\tilde{a}I_{\mathbb{T}} + \tilde{b}S_{\mathbb{T}}$ to be Fredholm operators). If ker $(aI_{\mathbb{T}} + bS_{\mathbb{T}}) \subseteq \text{Im } P_{n_0}$ and ker $(\tilde{a}I_{\mathbb{T}} + \tilde{b}S_{\mathbb{T}}) \subseteq$ Im P_{n_0} for a certain n_0 , then

$$P_{\ker(L_n(aI_{\mathbb{T}}+bS_{\mathbb{T}})P_n)}^{\operatorname{Im} P_n} = P_{\ker(aI_{\mathbb{T}}+bS_{\mathbb{T}})}^{[L^2(\mathbb{T},w)]^2} + W_n P_{\ker(\widetilde{a}I_{\mathbb{T}}+\widetilde{b}S_{\mathbb{T}})}^{[L^2(\mathbb{T},w)]^2} W_n$$

for all sufficiently large n.

From this result, the connection between the k-splitting property and the Moore-Penrose stability is clear:

$$\dim \ker A_n = \dim \ker W^1(A_n) + \dim \ker W^2(A_n).$$

The above proposition implies that (A_n) is a Moore-Penrose stable sequence, and from Proposition 6.5 in [7] we have that the sequence $A_n^*A_n + P_{\ker(L_n(aI_{\mathbb{T}}+bS_{\mathbb{T}})P_n)}^{\operatorname{Im}P_n}$ is stable and the sequence

$$B_n := \left(A_n A_n^* + P_{\ker(L_n(aI_{\mathbb{T}} + bS_{\mathbb{T}})P_n)}^{\operatorname{Im} P_n}\right)^{-1} A_n^*, \quad \text{for all sufficiently large } n,$$

is the Moore-Penrose inverse A_n .

Finally, we are now in conditions to provide the explicit Moore-Penrose inverse of the operator \mathcal{A} defined on (3) with the Carleman shift operator J as in (4) or in (5).

Theorem 3.2 Let us suppose \mathcal{A} to be Fredholm. Moreover, assume that for a certain n_0 , ker $(\mathcal{D}_{\mathbb{T}}) \subseteq \text{Im } P_{n_0}$ and ker $(\widetilde{\mathcal{D}}_{\mathbb{T}}) \subseteq \text{Im } P_{n_0}$, where the operator $\mathcal{D}_{\mathbb{T}}$ is given as in Theorem 2.1 in the case of J to be the shift operator (4) and as in Theorem 2.2 for J in (5) with, in each case, $\widetilde{\mathcal{D}}_{\mathbb{T}} = \widetilde{u}_{\mathbb{T}}I_{\mathbb{T}} + \widetilde{v}_{\mathbb{T}}S_{\mathbb{T}}$, where for a function $a \in [PC(\mathbb{T})]^{2\times 2}$ we have $\widetilde{a}(t) = a(\frac{1}{t}), t \in \mathbb{T}$. Then, the operator \mathcal{A} is Moore-Penrose invertible by \mathcal{A}^+ , where:

(1) For the shift operator $(J\varphi)(t) = \varphi(-t)$,

$$\mathcal{A}^{+} = MKGN\left[\left(\mathcal{D}_{\mathbb{T}}^{*}\mathcal{D}_{\mathbb{T}} + P_{\ker \mathcal{D}_{\mathbb{T}}}^{[L^{2}(\mathbb{T},w)]^{2}}\right)^{-1}\mathcal{D}_{\mathbb{T}}^{*}\right]N^{-1}G^{-1}K^{-1}M^{-1},$$

with $\mathcal{A}^+ \in \mathcal{L}(L^2(\mathbb{T}, w))$ and $w \in A_2^e(\mathbb{T})$. We recall that the explicit form of the operators $M^{\pm 1}$, K, $G^{\pm 1}$, $N^{\pm 1}$ and $\mathcal{D}_{\mathbb{T}}$ are given in (7)–(12);

(2) In the case of the shift operator $(J\varphi)(t) = \frac{1}{t}\varphi\left(\frac{1}{t}\right)$, we have

$$\mathcal{A}^{+} = B^{-1} M_{\mathbb{R}_{+}} K R_{\mathbb{R}_{+}} N_{\mathbb{R}_{+}} \operatorname{Rest}_{|_{[L^{2}(\mathbb{R}_{+},|x|^{-1/4})]}} B_{2} \left[\left(\mathcal{D}_{\mathbb{T}}^{*} \mathcal{D}_{\mathbb{T}} + P_{\ker \mathcal{D}_{\mathbb{T}}}^{[L^{2}(\mathbb{T},\gamma)]^{2}} \right)^{-1} \mathcal{D}_{\mathbb{T}}^{*} \right] \\ B_{2}^{-1} N_{\mathbb{R}_{+}}^{-1} K^{-1} M_{\mathbb{R}_{+}}^{-1} B,$$

with $\mathcal{A}^+ \in \mathcal{L}(L^2(\mathbb{T}))$ and γ is the weight $\gamma(t) = \left|i\frac{1+t}{1-t}\right|^{-1/4}$. The explicit form of the operators $B^{\pm 1}, M_{\mathbb{R}_+}^{\pm 1}, N_{\mathbb{R}_+}^{\pm 1}, K, R_{\mathbb{R}_+}, B_2^{\pm 1}$ and $\mathcal{D}_{\mathbb{T}}$ are given in (15)–(21) and (23).

Proof. Since \mathcal{A} is a Fredholm operator, then \mathcal{A} is a Moore-Penrose invertible operator. Also, from Theorem 2.1 (Theorem 2.2) we have that \mathcal{A} is equivalent (equivalent after extension) to the operator $\mathcal{D}_{\mathbb{T}}$ with coefficients $u_{\mathbb{T}}$ and $v_{\mathbb{T}}$ depending of the shift J.

On the other hand, we know that $(A_n) = (L_n(u_{\mathbb{T}}I_{\mathbb{T}} + v_{\mathbb{T}}S_{\mathbb{T}})P_n)$ converge strongly to $\mathcal{D}_{\mathbb{T}}$, as $n \longrightarrow \infty$. Also, the hypothesis that $\ker(\mathcal{D}_{\mathbb{T}}) \subseteq \operatorname{Im} P_{n_0}$ and $\ker(\widetilde{\mathcal{D}}_{\mathbb{T}}) \subseteq \operatorname{Im} P_{n_0}$ for a certain n_0 , allow us to apply Proposition 3.3. Thus, we have that (A_n) is a Moore-Penrose stable sequence with Moore-Penrose inverse

$$B_n := (A_n A_n^* + P_{\ker(L_n(aI_{\mathbb{T}} + bS_{\mathbb{T}})P_n)}^{\operatorname{Im} P_n})^{-1} A_n^*.$$

Moreover, $B_n \longrightarrow \mathcal{D}^+_{\mathbb{T}}$.

The explicit form of \mathcal{A}^+ is obtained from B_n , as $n \to \infty$, and from the operators given in Theorem 2.1, for the shift operator J given on (4), and Theorem 2.2 for Jdefined on (5) (being fundamental in this last step to have in complete explicit form the corresponding operator relations).

Acknowledgments

This work was supported in part by *Center of Research and Development in Mathematics and Applications* of Universidade de Aveiro through the Portuguese Science Foundation (*FCT–Fundação para a Ciência e a Tecnologia*). E.M. Rojas is sponsored by FCT (Portugal) under grant number SFRH/BD/30679/2006.

References

- Bart, H. and Tsekanovshii, V. E., Matricial coupling and equivalence after extension. Oper. Theory Adv. Appl., Vol. 59 (1992), 143–160.
- Borwein, P. B., Xie, T. F. and Zhou, S. P. On approximation by trigonometric Lagrange interpolating polynomials II. Bull Austral. Math. Soc., Vol. 45 (1992), 215–221.
- Castro, L. P. and Rojas, E. M., Reduction of singular integral operators with flip and their Fredholm property. Lobachevskii J. Math., Vol. 29 (3) (2008), 119–129.
- Castro, L. P. and Rojas, E. M., Similarity transformation methods for singular integral operators with reflection on weighted Lebesgue spaces. Int. J. Mod. Math., Vol. 3 (3) (2008), 295–313.
- Castro, L. P. and Rojas, E. M., Explicit operator relations for singular integral operators with a flip on a weighted Lebesgue space, S. Sivasundaram (ed.), Mathematical Problems in Engineering and Aerospace Sciences, 543–550, Cambridge Scientific Publishers, Cambridge, 2009.
- Castro, L. P. and Speck, F.-O., Regularity properties and generalized inverses of deltarelated operators. Z. Anal. Anwend., Vol. 17 (1998), 577–598.

- Hagen, R., Roch, S. and Silbermann, B., C^{*}-algebras and Numerical Analysis, Monographs and Textbooks in Pure Appl. Math. 236, Marcel Dekker, New York, 2001
- Junghanns, P. and Silbermann, B., Local theory of the collocation method for the approximate section of singular integral equations. Integral Equations and Operator Theory, Vol. 7 (6) (1984), 791–807.
- Neval, P. G., Mean convergence of Lagrange interpolation, II. Journal of Approximation Theory, Vol. 30 (1980), 263–276.
- Prössdorf, S. and Silbermann, B., Numerical Analysis for Integral and Related Operator Equations, Birkhauser, Basel, 1991.
- Silbermann, B., Modified finite section for Toeplitz operators and their singular values. SIAM J. Math. Anal. Appl., Vol. 24 (2003), 678–692.
 - L. P. Castro
 Department of Mathematics
 University of Aveiro
 3810-193 Aveiro, PORTUGAL
 castro@ua.pt
 E. M. Rojas
 Department of Mathematics
 University of Aveiro
 3810-193 Aveiro, PORTUGAL
 edixonr@ula.ve