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COMPLETE SOLUTION OF THE DIOPHANTINE EQUATION

x2 + 5a · 11b = yn

G. SOYDAN AND N. TZANAKIS

Abstract. The title equation is completely solved in integers (n, x, y, a, b), where n ≥ 3,
gcd(x, y) = 1 and a, b ≥ 0. The most difficult stage of the resolution is the explicit resolution of
a quintic Thue-Mahler equation. Since it is for the first time -to the best of our knowledge- that
such an equation is solved in the literature, we make a detailed presentation of the resolution;
this gives our paper also an expository character.

1. Introduction

The title equation belongs to the general class of Diophantine equations of the form

(1.1) x2 +D = yn, x, y ≥ 1, n ≥ 3,

where D is a positive integer all whose prime factors belong to a finite set S of at least two
distinct primes. All solutions of the Diophantine equation (1.1) have been determined for various
sets S: In [21] for S = {2, 3}, in [22] for S = {2, 5}, in [10] for S = {2, 11}, in [23] for S = {2, 13},
in [13] for S = {2, 17}, S = {2, 29}, S = {2, 41}, in [32] for S = {2, 19}. Note that, in all these
cases, S = {2, p}, where p is an odd prime. The case of S = {2, p}, with a general odd prime p,
was recently studied by H. Zhu, M. Le, G. Soydan and A. Togbé [38], who gave all the solutions
of x2 + 2apb = yn, x ≥ 1, y > 1, gcd(x, y) = 1, a ≥ 0, b > 0, n ≥ 3 under some conditions.

Several papers deal with the Diophantine equation (1.1) when S contains at least two distinct
odd primes. Thus, all solutions of the Diophantine equation (1.1) were given in [2] for S =
{5, 13}, in [28] for S = {5, 17}, in [30], [31] for S = {7, 11} -except for the case when ax is
odd and b is even-, in [6] for S = {11, 17}, in [17] for S = {2, 5, 13}, in [9] for S = {2, 3, 11},
in [15] for S = {2, 5, 17}. In [27], Pink gave all the non-exceptional solutions of the equation
(1.1) (according to the terminology of that paper) for S = {2, 3, 5, 7}. A survey of these and
many others can be found in [6], [1]. Very recently, the equations with S = {2, 3, 17} and
S = {2, 13, 17} were solved in [16].

In [11], I.N. Cangul, M. Demirci, G. Soydan and N. Tzanakis gave the complete solution
(n, a, b, x, y) of the Diophantine equation (1.1) for S = {5, 11} when gcd(x, y) = 1, except for
the case when abx is odd. In this paper we treat this remaining case, proving thus the following:

Theorem 1.1. For the integer solutions of the equation

(1.2) x2 + 5a11b = yn, n ≥ 3, x, y ≥ 1, gcd(x, y) = 1, a, b ≥ 0,

the following hold:
If n = 3, the only solutions are: (a, b, x, y) = (0, 1, 4, 3), (0, 1, 58, 15), (0, 2, 2, 5),
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(0, 3, 9324, 443), (1, 1, 3, 4), (1, 1, 419, 56), (2, 3, 968, 99), (3, 1, 37, 14), (5, 5, 36599, 1226).
If n = 4 there are no solutions (a, b, x, y) and, for n = 6, the only integer solution is (a, b, x, y) =
(1, 1, 3, 2).
If n = 5 or n ≥ 7, the equation has no integer solutions (a, b, x, y).

The proof of Theorem 1.1 is already accomplished in [11, Theorem 1] for the following cases:
(A) n = 3, 4, 6, and (B) n ≥ 5, n 6= 6 and either (i) ab is odd and x is even, or (ii) at least one
of a, b is even. Therefore, what remains is:

To prove that, if n ≥ 5 is prime, then the equation (1.2) has no solution
(a, b, x, y) with abx odd.

This paper has two objectives, the first one being displayed above. Second is the systematic
discussion in Section 3 of the resolution of the quintic Thue-Mahler equation (3.5) which, along
with the three Appendices (see “Plan of the paper” below) lends also an expository character
to the paper, as it presents in detail the application of the method of N. Tzanakis & B.M.M. de
Weger [34] to the explicit resolution of a quintic Thue-Mahler equation. To the best of our
knowledge, in the literature it is the first example of explicit resolution of a quintic Thue-Mahler
equation. Indeed, in [34], the worked example is a cubic Thue-Mahler equation; those days –
almost 25 years ago– the available software was not as developed as to support the application
of the method to a quintic Thue-Mahler equation; even until today, only very few works are
published in which Thue-Mahler equations are explicitly solved and none of them deals with a
quintic equation; more specifically: In [11], I.N. Cangul, M. Demirci, G. Soydan and N. Tzanakis
need to solve –successfully– a quartic Thue-Mahler equation. In [19], Dohyeong Kim proposes
a method different from that of [34] –with many examples– for the explicit resolution of cubic
Thue-Mahler equations, which exploits the modularity of elliptic curves over Q. M.A. Bennett
and S.R. Dahmen [4], in their study of generalized superelliptic equations need to consider some
special classes of Thue-Mahler equations. These are closely related to the so-called Klein forms,
which are defined as binary forms of the following shape: F (x, y) := Fn(ax + by, cx + dy),

where

(
a b
c d

)
∈ GL2(Q), n ∈ {2, 3, 4, 5} and F2(x, y) = xy(x + y), F3(x, y) = y(x3 + y3),

F4(x, y) = xy(x4 + y4), F5(x, y) = xy(x10 − 11x5y5 − y10). Thue-Mahler equations whose left-
hand side is a Klein form are considered. In the case of cubic Klein forms, Bennett and Dahmen,
implemented the method of [34]; for the purposes of their paper, explicit resolution of higher
degree Thue-Mahler equations was not necessary.
Finally, we mention Kyle Hambrook’s M. Sc. thesis [18], where the method of [34] is revisited,
certain improvements are included and, most importantly, a long1 magma program is developed
for the automatic resolution of the general Thue-Mahler equation; the program needs as its input
only the coefficients and the primes of the equation. No examples of Thue-Mahler equations
of degree greater than three are discussed. As we checked, the program runs very successfully
with “reasonable” cubic Thue-Mahler equations. This work is, certainly, a good contribution to
the project of the automatic resolution of Thue-Mahler equations. However, in the case of our
quintic Thue-Mahler equation (3.5), it took 72 days on an Apple computer with the following
characteristics: Processor Intel i5, 2.5 GHz, 4GB RAM, 1600 MHz DDR3. Therefore, we
preferred to develop also our own magma program, far less automatic than that of Hambrook,
which needs human intervention at various points. With this program, the resolution of the
quintic Thue-Mahler equation took less than 2 h 20′. Besides this huge difference in computation

1More than 200 pages!
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time, this “primitive” type of computer-aided resolution, however, has the advantage that it
allows a rather transparent presentation of the very complicated resolution. It is our belief
that the experience in the “technical details” needed for the development of a very satisfactory
“Thue-Mahler automatic solver” requires the resolution of quite a number of specific Thue-
Mahler equations (over Z) of degree ≤ 6 (at least), with corresponding number fields of various
types.2

Plan of the paper. In Section 2 we prove that equation (1.2) has no solutions with abx odd
and prime n ≥ 7. Thus, we are reduced to proving that our equation has no solutions with abx
odd and n = 5. This is accomplished in Section 3 which is the heart of the paper and is divided
into two subsections. In Subsection 3.1, using standard algebraic Number Theory, we reduce
the equation x2 + 5a11b = y5 -with gcd(x, y) = 1 and abx odd- to the quintic Thue-Mahler
equation (3.5), whose right-hand side is −25345z111z2 , where z1 = (a− 1)/2 and z2 = (b− 1)/2
are now our non-negative unknown integers. Then, Subsection 3.2 is devoted to the resolution
of that Thue-Mahler equation, quite a complicated task. In order to make the exposition of
our resolution as clear as possible, we divided Subsection 3.2 into nine (sub)subsections from
(sub)Subsection 3.2.1 through (sub)Subsection 3.2.9.
• In Subsection 3.2.1, using standard arguments from algebraic Number Theory along with
the valuable routines of magma [3], we reduce our quintic Thue-Mahler equation to the ideal
equations (3.7) and (3.8), in the right-hand side of which appear the unknown non-negative
integers z1 and z2.
• In Subsection 3.2.2, working 5-adically, we prove that z1 ≤ 27 (implying a ≤ 55).
• In Subsection 3.2.3 we we work 11-adically. Making also use of the upper bound z1 ≤ 27,
we are led to the following situation: Instead of solving one (quintic) Thue-Mahler equation in
which the exponents of the primes 5 and 11 are among the unknowns, we are led to solving 28
similar Thue-Mahler equations, with all having the same left-hand side and right-hand sides in
which only the exponent of the prime 11 is among the unknowns. This is certainly a profit; these
28 equations can be treated as one equation, namely, equation (3.16). In this last equation,
besides the unknown integer z2 = (b− 1)/2, three more unknown integers a1, . . . , a4 make their
appearance; these are the exponents of the four fundamental units of the quintic field related
to the Thue-Mahler equation.
• In Subsection 3.2.4 the aforementioned equation (3.16) leads to the three-term S-unit equa-
tion (3.17); this is the basic step towards the use of Linear Forms in Logarithms in both the
real/complex and the p-adic sense; consequently:
• In Subsection 3.2.5 we are in a position to apply a powerful result of Kunrui Yu (Theo-
rem 3.2 in this paper) which, given the algebraic numbers α1, . . . , αn and a prime p, provides

an upper bound for the p-adic valuation of αb11 · · ·αbnn − 1, for any b1, . . . , bn ∈ Z, in terms
of log max{3, |b1|, . . . , |bn|}.3 Combining the result of this application with the instructions in
p. 238 of [34] we manage to bound z2 in terms of log max{z2, |a1|, . . . , |a4|}. We remark here
that, in order to conform with the notation of [34], the recipes of which we follow very closely,
we denote z2 by n1.

2We mention here that very satisfactory automatic Thue solvers are included, for example, in pari [26] and
magma [3] since long time, and are based on Bilu-Hanrot’s improvement [7] of Tzanakis-de Weger [33] method for
solving Thue equations. The development of an automatic Thue solver is, certainly, a difficult job but, anyway,
much easier than an analogous job for a Thue-Mahler equation. We use the magma Thue solver in Subsection
3.2.9.

3This is, actually, equivalent to giving a lower bound of the p-adic absolute value for a linear form in the
p-adic logarithms of α1, . . . , αn.
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• In Subsection 3.2.6 we apply another strong result due to E.M. Matveev (Theorem 3.3
in this paper) which, given the algebraic numbers α1, . . . , αn, provides4 a lower bound for
|b1 logα1 + · · · + bn logαn|, for any b1, . . . , bn ∈ Z, in terms of log max{3, |b1|, . . . , |bn|}. Ap-
plying this theorem in our case and combining the result with the detailed instructions of [34,
§§ 10,11], we obtain a numerical upper bound for H = max{n1, |a1|, |a2|, |a3|, |a4|}; see (3.23).
Then, this upper bound of H, in combination with the result of the previous Subsection 3.2.5,
gives a specific numerical upper bound for n1, which is considerably smaller than H; see (3.24).
However, both upper bounds are huge, of the size of 1043 and 1032, respectively and need to be
reduced to a manageable size, as discussed in [34, Section 13].
• In Subsection 3.2.7 we apply the so-called “p-adic reduction step”, which is described in detail
in Sections 12,14 and 15 of [34] and reduce the upper bound for n1 to n1 ≤ 207.
• In Subsection 3.2.8 we combine this extremely smaller upper bound with the (still remaining)
huge upper bound of H, and do the “real reduction step”, following the instructions of [34,
Section 16]. With this step we get the bound H ≤ 231.
• In the final Subsection 3.2.9 we discuss how we proceed with a further reduction, by succes-
sively repeating the “p-adic reduction” and the “real reduction” steps two more times, until we
obtain the bound (z2 =)n1 ≤ 21 and H ≤ 34. At this point we don’t need the bound H ≤ 34; as
explained in Subsection 3.2.9, we are left with the task of solving 560 Thue equations (3.5), whose
right-hand sides runs through the set {−25345z111z2 : 0 ≤ z1 ≤ 27, z2 = 0 or 3 ≤ z2 ≤ 21};
note that the left-hand sides of all these Thue equations are identical. For their solution we use
magma’s implementation of Bilu & Hanrot’s method [7]. It turns out that no solutions exist
and this completes the proof that equation (1.2) with abx odd and n = 5 has no solutions. Since
in Section 2 we have also proved that equation (1.2) with abx odd and n > 5 has no solutions,
we have completed the proof of Theorem 1.1.

In the Appendices A through B at the end of the paper we collect some theoretical facts and
give some information about how these are realized in practice with the use of magma [3]. We
also give the results of a few computations. The huge algebraic numbers in Appendix B are not
strictly necessary; however, they are useful in giving the reader a sense of what “monsters” are
involved in such a task. We hope that the appendices will make transparent our way of work
and friendly the reading of our paper.
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2. Equation (1.2) with abx odd and prime n ≥ 7

Proposition 2.1. Equation (1.2) has no solutions with xab odd and prime n ≥ 7.

Proof. We assume that a solution (x, a, b, n, y) in which xab is odd and n is a prime ≥ 7
does exist, and we put a = na1 + α and b = nb1 + β, where 0 ≤ α, β < n, so that our equation
becomes

(2.1) 5α11β(−5a111b1)n + yn = x2.

4Under one or two mild conditions.
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Without loss of generality we assume that x ≡ 1 (mod 4). According to the notation etc of [29,
Section 14], this is a ternary equation of signature (n, n, 2), so that it falls under the scope of
the recipe described in [29, §14.2]. Accordingly, we have the following table which shows how
we will apply that recipe in our case.

Table 1. Application of the recipe in §14.2 of [29]

Notations/conditions in [29, §14.2] Interpretations in this paper

A 5α11β

B 1
C 1

x −5a111b1

y y
z x

general prime q general prime q
p n

ordq(B) < p trivially satisfied
ordq(A) < p α, β < p
C square-free trivially satisfied

Since y is even, x ≡ 1 (mod 4) and n ≥ 7, our equation falls in case (v) of [29, §14.2] and we
deal with the elliptic curve

E3 : Y 2 +XY = X3 +
x− 1

4
X2 +

yn

64
X.

According to a result of Bennett and Skinner [5, Lemma 2.1] (or [29, Theorem 16]), the dis-
criminant and conductor of this elliptic curve are, respectively

∆3 = −2−125α11β(5a111b1y2)n = −2−125a11by2n, N3 = 55 Rad(y) = 5 · 11
∏
q|y

q,

where in the last product q is prime. According to [29, Theorem 16 (c)], there exists a newform
f of level Nn = 2 · 5 · 11 = 110, such that E3 ∼n f (E3 arises from f mod n; see [29, §5]).

A computation using magma returns three rational newforms of level 110, namely5

f1 = q − q2 + q3 + q4 − q5 − q6 + 5q7 − q8 − 2q9 + q10 + q11 +O(q12)

f2 = q + q2 + q3 + q4 − q5 + q6 − q7 + q8 − 2q9 − q10 − q11 +O(q12)

f3 = q + q2 − q3 + q4 + q5 − q6 + 3q7 + q8 − 2q9 + q10 + q11 +O(q12)

and a non-rational newform

f4 = q − q2 + αq3 + q4 + q5 − αq6 − αq7 − q8 + (5− α)q9 − q10 − q11 +O(q12),

where α2 + α− 8 = 0, along with its conjugate newform.
Now we apply [29, Proposition 9.1] to E = E3 and f = fi, i = 1, 2, 3, 4. Our notation refers

to that Proposition. Since (X,Y ) = (0, 0) is a 2-torsion point on E3, we take t = 2. Also
N ′ = 110 and we choose the prime ` = 3, noting that ` - N ′ and `2 - N3. Then,

S3 = {a ∈ Z : −2
√

3 ≤ a ≤ 2
√

3, a is even} = {−2, 0, 2}.

5Below q denotes the “q-variable” of the modular form and has nothing to do with primes.
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Also, denoting by c3i the coefficient of q3 in the newform fi, we compute

B3(fi) = (42 − c2
3i)
∏
a∈S3

(a− c3i) =

{
32 · 5 if i = 1, 2

−32 · 5 if i = 3.

For the newform f4 we compute

B3(f4) = 3 ·NormQ(α)/Q(42 − α2)
1∏

k=−1

NormQ(α)/Q(2k − α) = −33 · 29.

According to the conclusion of [29, Proposition 9.1], nmust divideB3(fi) for some i ∈ {1, 2, 3, 4},
which is impossible since we assumed that n is a prime ≥ 7. 2

3. Equation (1.2) with abx odd and n = 5

3.1. Reduction to the Thue-Mahler equation (3.5). In view of Proposition 2.1, we are
left with n = 3, 5. The case n = 3 is already solved completely; see [11, Proposition 2]. In
particular, the only solutions with abx odd are the following:

(a, b, x, y) = (1, 1, 3, 4), (1, 1, 419, 56), (3, 1, 37, 14), (5, 5, 36599, 1226).

It remains to treat the title equation when n = 5 and xab is odd. We write our equation

(3.1) x2 + 55z2 = 25y5
1, x ≡ 1 (mod 4), y = 2y1, z = 5(a−1)/211(b−1)/2

and work in the field

L = Q(ρ), ρ =
1 +
√
−55

2
(ρ2 − ρ+ 14 = 0).

Using either pari-gp [26] or magma [3] we can obtain the following facts about the number-field
L:

• The class-number is 4.
• 〈2〉 = p2p

′
2, where p2 = 〈2, ρ〉, p′2 = 〈2, 3 + ρ〉.

• The order of the ideal-class of both p2 and p′2 in the ideal-class group is 4. More
specifically, p4

2 = 〈2− ρ〉 and p′2 = 〈1 + ρ〉.
• 〈ρ〉 = p2〈7, ρ〉.

From (3.1) we obtain the ideal equation

(3.2) p5
2p
′
2

5〈y1〉5 = 〈x+ z
√
−55〉〈x− z

√
−55〉 = 〈x− z + 2zρ〉〈x+ z − 2zρ〉

Our first observation is that no prime ideal factor over an odd rational prime can divide both
ideal factors in the right-hand side of (3.2). Indeed, if p is a prime ideal over an odd rational
prime, then p|2x, hence p|x. But p|〈x + z

√
−55〉, hence p|z

√
−55. It follows that p|55, which

contradicts gcd(x, 55) = 1.
Next we observe that 2 divides both x − z + 2zρ and x + z − 2zρ. From 〈ρ〉 = p2〈7, ρ〉

we see that 〈2zρ〉 = p2
2p
′
2 × (ideal relatively prime to 2). Also x + z ≡ 2 (mod 4) shows that

ordp2(x+ z) = 1 = ordp′2
(x+ z). As a consequence, ordp2(x+ z− 2zρ) = 1 = ordp′2

(x+ z− 2zρ),

which implies that p2‖〈x + z − 2zρ〉 and p′2‖〈x − z + 2zρ〉. Similarly, starting from x − z ≡ 0
(mod 4), we conclude that p′2‖〈x− z − 2zρ〉.

Combining the above small observations with (3.2), we conclude that

(3.3) 〈x− z + 2zρ〉 = p′2p
4
2a

5
1, 〈x+ z − 2zρ〉 = p2p

′
2

4a5
2,

where a1, a2 are relatively prime (integral) ideals, such that a1a2 = 〈y1〉.
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The first equation (3.3) becomes

〈x− z + 2zρ〉 = p′2a
5
1〈2− ρ〉.

Since the class-number is 4, the above ideal equation implies the ideal-class equation [1] =
[p′2][a1] = [p′2a1]. Therefore, p′2a1 is a principal ideal, so that, on multiplying both sides of the
above displayed equation by p′2

4 and setting p′2a1 = 〈u+ vρ〉 (u, v ∈ Z) we finally arrive at the
following (element) equation

(3.4) (1 + ρ)(x− z + 2zρ) = (2− ρ)(u+ vρ)n.

In (3.4) we equate coefficients of ρ in both sides, as well as rational parts, obtaining thus the
following two relations:

3u5 + 65vu4 − 290v2u3 − 2110v3u2 + 975v4u+ 3149v5 = −32 · 5(a−1)/211(b−1)/2,

23u5 − 355vu4 − 3930v2u3 + 6010v3u2 + 30515v4u− 2311v5 = −32x.

By multiplying both sides of the first displayed equation by 34 we get

(3u)5 + 65v(3u)4 − 870v2(3u)3 − 18990v3(3u)2 + 26325v4(3u) + 255069v5

= −25 · 34 · 5(a−1)/211(b−1)/2

In order to conform precisely with the notations of [34] the method of which we will apply in
this section, we set

(3u, v) = (x, y), z1 = (a− 1)/2, z2 = (b− 1)/2,

so that

(3.5) NormF/Q(x− yθ) = −25 · 34 · 5z111z2 ,

where F = Q(θ) with g(θ) = 0 and

(3.6) g(t) = t5 + 65t4 − 870t3 − 18990t2 + 26325t+ 255069,

with (polynomial) discriminant Dθ = 232312511116.

3.2. Resolution of the Thue-Mahler equation (3.5).

3.2.1. From equations (3.5) to ideal equations (3.7) and (3.8). We need the following arithmeti-
cal data for the number field F .

• F is a totally real field with class-number 1.
• An integral basis is 1, β2, β3, β4, β5, where

β2 = 1
2(θ + 1), β3 = 1

24(θ2 + 2θ + 9),

β4 = 1
7920(θ3 + 227θ2 + 3603θ + 3969), β5 = 1

95040(θ4 + 8θ3 + 1410θ2 + 46512θ + 9909).

• A quadruple of fundamental units is the following:

ε1 = 1
15840(θ4 + 62θ3 − 852θ2 − 1806θ + 6435) (Norm(ε1) = 1)

ε2 = 1
95040(−θ4 − 104θ3 + 558θ2 + 35280θ + 108027) (Norm(ε2) = −1)

ε3 = 1
23760(θ4 + 77θ3 + 243θ2 + 99θ − 10260) (Norm(ε3) = 1)

ε4 = 1
95040(7θ4 + 596θ3 + 5730θ2 − 25596θ − 210897) (Norm(ε4) = 1)
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• Prime factorization of 2:

2 = −ε21ε22ε3ε24π5
2,

π2 = 1
95040(17θ4 + 1048θ3 − 18486θ2 − 271440θ + 1590381) (Norm(π2) = −2)

• Prime factorization of 3:

3 = −π31π32

π31 = 1
95040(13θ4 + 896θ3 − 7806θ2 − 280008θ − 861975) (Norm(π31) = 3)

π32 = 1
31680(θ4 + 68θ3 − 810θ2 − 22428θ + 105489) (Norm(π32) = −34)

• Prime factorization of 5:

5 = −ε1ε−1
2 ε23ε4π

5
5

π5 = 1
95040(13θ4 + 896θ3 − 7806θ2 − 280008θ − 671895) (Norm(π5) = 5)

• Prime factorization of 11:

11 = ε−1
1 ε−1

2 ε−1
4 π2

111π
2
112π113

π111 = 1
47520(−θ4 − 56θ3 + 1554θ2 + 22104θ + 43119) (Norm(π111 = 11)

π112 = 1
95040(θ4 + 68θ3 − 810θ2 − 6588θ + 57969) (Norm(π112) = 11)

π113 = 1
31680(−13θ4 − 896θ3 + 7806θ2 + 280008θ + 798615) (Norm(π113) = −11)

The above information combined with (3.5) easily implies that we have the following possibilities:

〈x− yθ〉 = 〈π2〉5〈π31〉4〈π5〉z1〈π111〉w1〈π112〉w2〈π113〉w3(3.7)

〈x− yθ〉 = 〈π2〉5〈π32〉〈π5〉z1〈π111〉w1〈π112〉w2〈π113〉w3(3.8)

where, in both cases,

(3.9) w1 + w2 + w3 = z2.

3.2.2. Treating 5-adically equations (3.7) and (3.8). From the ideal equations (3.7) and (3.8)
we will compute an upper bound for the unknown exponent z1, using the “Second Corollary
of Lemma 1” in Section 5 of [34]. As a consequence, the equation (3.5) will be replaced by a
rather small number of similar equations in which only the exponent z2 will be unknown; this
is certainly a gain. With the notations of Sections 3,5 of [34] we have in our case:

Table 2. Application of “Second Corollary of Lemma 1” in [34] when p = 5

Notations in [34, §§ 3,5] Interpretations in this case and [references in this paper]

p 5

g(t) (§3) t5 + 65t4 − 870t3 − 18990t2 + 26325t+ 255069 [(3.6)]

m (§3) 1; g(t) is irreducible over Q5, hence g(t) = g1(t)
p1, e1, d1 (§3) 〈π5〉, 5, 1 [page 132]

e (§5) 5

Dθ (§5) 232312511116 [(3.6)]
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In view of the fact that m = 1 and e1 = 5, the “Second Corollary of Lemma 1” in [34] implies
that z1 = ordπ5(x− yθ) ≤ 1

2e · ord5(Dθ) = 55/2, hence,

(3.10) z1 ≤ 27, implying a ≤ 55.

3.2.3. Treating 11-adically equations (3.7) and (3.8). Once again we use the notations of Sec-
tions 3,5 of [34]. Now g(t) = g1(t)g2(t)g3(t) is the factorization of g(t) into irreducible polyno-
mials of Q11[t], where

g1(t) = t2 + (3 + 3 · 11 + 8 · 112 + 9 · 113 + 5 · 114 + · · · )t+ (5 + 7 · 112 + 10 · 113 + 10 · 114 + · · · ),

g2(t) = t2 + (3 + 5 · 11 + 5 · 112 + 2 · 114 + · · · )t+ (5 + 113 + 7 · 114 + · · · ),
g3(t) = t− (7 + 2 · 11 + 2 · 112 + 10 · 113 + 7 · 114 + · · · ).

Let g1(θ1) = 0, g2(θ2) = 0, g3(θ3) = 0. Following the notation of the beginning of §5 of [34] we
denote the Q11-conjugates of the θi’s as follows:

• θ(i)
1 , i = 1, 2; the roots of g1(t), living in a quadratic extension of Q11.

• θ(i)
2 , i = 1, 2; the roots of g2(t), living in a quadratic extension of Q11.

• θ(1)
3 = θ3 = 7 + 2 · 11 + 2 · 112 + 10 · 113 + 7 · 114 + · · · ∈ Q11; the root of g3(t).

Table 3. Application of “Second Corollary of Lemma 1” in [34] when p = 11

Notations in [34, §§ 3,5] Corresponding values in this case
and [references in this paper]

p 11

g(t) (§3) t5 + 65t4 − 870t3 − 18990t2 + 26325t+ 255069 [(3.6)]

m (§3) 3; g(t) = g1(t)g2(t)g3(t) [beginning of Subsection 3.2.3

p1, e1, d1 〈π111〉, 2, 1
p2, e2, d2 (§3) 〈π112〉, 2, 1
p3, e3, d3 〈π113〉, 1, 1

[page 132]
e (§5) 1

Dθ (§5) 232312511116 [(3.6)]

Since we intend to apply the Prime Ideal Removing Lemma [34, Lemma 1], we must compute

(3.11) max{ei, ej} · ord11(θ
(k)
i − θ

(l)
j ), i, j ∈ {1, 2, 3}, i 6= j,

where k = 1 if i = 3 and k ∈ {1, 2} if i = 1 or 2; and analogously, l = 1 if j = 3 and
l ∈ {1, 2} if j = 1 or 2. According to the discussion in Appendix A, in order to compute

ord11(θ
(k)
i −θ

(l)
j ) for fixed 1 ≤ i < j ≤ 3, it suffices to compute a polynomial hij(t) ∈ Q11[t] such

that hij(θj − θi) = 0. Moreover, since ordp(−α) = ordp(α), it is clear that it suffices to consider
only the values (i, j) = (1, 3), (2, 3), (1, 2).
Obviously, hi3(t) = gi(t+ θ3), hence

h13(t) = t2 + (6 + 8 · 11 + 112 + 8 · 113 + 10 · 114 + · · · )t+ (9 + 6 · 11 + 2 · 112 + 8 · 113 + · · · ).

h23(t) = t2 +(6+10 ·11+9 ·112 +9 ·113 +6 ·114 + · · · )t+(9+9 ·11+112 +9 ·113 +9 ·114 + · · · ),
It follows that, when in (3.11) we have (i, j) = (1, 3), (2, 3), then ord11(θ

(k)
i − θ

(l)
j ) = 0.
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When (i, j) = (1, 2), the following lemma, whose proof is a matter of straightforward calcula-

tions, gives us a quartic polynomial h12(t) ∈ Q11[t] which has θ
(k)
1 − θ

(l)
2 as a zero (independent

from k, l).

Lemma 3.1. If θ2
i +aiθi+ bi = 0 for i = 1, 2, then θ2− θ1 is a root of t4 + c3t

3 + c2t
2 + c1t+ c0,

where

c3 = 2(a2 − a1), c2 = a2
2 + a2

1 − 3a1a2 + 2b2 + 2b1

c1 = a2
1a2 − a2

2a1 − 2b2a1 − 2a1b1 + 2a2b2 + 2b1a2,

c0 = b22 + b21 + b2a
2
1 + b1a

2
2 − b2a1a2 − b1a1a2 − 2b2b1.

The constant term of h12(t) is 9·112+5·113+6·114+· · · , hence (A.1) gives ord11(θ
(k)
1 −θ

(l)
2 ) =

2/4 = 1/2.
In view of the above, when (i, j) = (1, 3) or (2, 3), the number (3.11) is zero, therefore, statement
(i) of the aforementioned Prime Ideal Removing Lemma implies that x − yθ is divisible by at
most one prime among π111 and π113 (equivalently: w1 = 0 or w3 = 0) and by at most one
prime among π112 and π113 (equivalently: w2 = 0 or w3 = 0), hence

(3.12) either w3 = 0 or (w1, w2) = (0, 0).

When (i, j) = (1, 2), the number (3.11) is equal to 1, hence, again by statement (i) of the Prime
Ideal Removing Lemma, it follows that at most one among π111 and π112 divides x − yθ with
power > 1. If this actually occurs for π11i (i = 1 or 2), which means that ordπ11i(x − yθ) > 1,
then statement (ii) of the Prime Ideal Removing Lemma implies that

ordπ11i(x− yθ) ≤ 2 ord11(θ
(1)
i − θ

(2)
i ) = 2 · 1

2
= 1,

because, (θ
(1)
i − θ

(2)
i )2 being the discriminant of the polynomial gi(t), is equal to either 6 · 11 +

8 · 112 + O(113) if i = 1, or to 7 · 11 + 2 · 112 + O(113) if i = 2. This contradiction shows that
ordπ11i(x− yθ) ≤ 1 for both i = 1, 2, i.e.

(3.13) wi ≤ 1 (i = 1, 2).

If we combine (3.12) and (3.13) we see that we have the following possibilities:

(3.14) (w1, w2, w3) = (0, 0, w3), (0, 1, 0), (1, 0, 0), (1, 1, 0),

where in the first case we understand that w3 can be “large”. The remaining three possibilities
combined with the relations (3.7) and (3.8), lead us to

〈x− yθ〉 = 〈π2〉5〈π31〉4〈π5〉z1〈π111〉w1〈π112〉w2

〈x− yθ〉 = 〈π2〉5〈π32〉〈π5〉z1〈π111〉w1〈π112〉w2 .

By (3.9), z2 = w1 +w2 +w3 = w1 +w2 = 1, 2, and by (3.10), 0 ≤ z1 ≤ 27. Taking norms in the
above relations, we obtain the following fifty six Thue equations (cf. (3.5):

x5 + 65x4y − 870x3y2 − 18990x2y3 + 26325xy4 + 255069y5 = c(3.15)

c ∈ {−25 · 34 · 5z1 · 11z2 : 0 ≤ z1 ≤ 27, 1 ≤ z2 ≤ 2}.

The magma routine for solving Thue equations, based on Bilu & Hanrot method [7] (which
improves the method of [33]) “answers” that there are no solutions at all. The computation
cost for this task is less than 2.5 seconds.
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In view of the above discussion, we are left with the first case in (3.14), hence we have to solve
the ideal equations 〈x−yθ〉 = 〈π2〉5〈π31〉4〈π5〉z1〈π113〉w3 and 〈x−yθ〉 = 〈π2〉5〈π32〉〈π5〉z1〈π113〉w3 ,
where, in both cases, 0 ≤ z1 ≤ 27.

To sum up, the solution of the equation (3.5) is reduced to that of the equation

x− yθ = αεa11 ε
a2
2 ε

a3
3 ε

a4
4 π

n1
113(3.16)

α ∈ {π5
2π

4
31π

z1
5 , π

5
2π32π

z1
5 : 0 ≤ z1 ≤ 27}, n1 = w3 = z2 = (b− 1)/2.

in the unknowns (a1, a2, a3, a4, n1) ∈ Z4 × Z≥0.

3.2.4. From equation (3.16) to S-unit equation (3.17). Let K be an extension of F such that g(t)
has at least three linear factors in K[t]. Actually, in our case, such an extension coincides with
the splitting field of g(t) over F (see (3.6)). We have K = Q(ω) and the minimal polynomial

of ω over Q, denoted by G(t), is of degree 20 (see Appendix B). Thus, there exist θ(i)(t) ∈ Q[t]

(i = 1, . . . , 5), so that the Q-conjugates θ(i) of θ are

θ(i)(ω) ∈ Q(ω) = K (i = 1, . . . , 5).

For every i ∈ {1, . . . , 5}, the i-th embedding F ↪→ K is characterized by θ 7→ θ(i)(ω) and maps

the general element β ∈ F to its i-th conjugate β(i)(ω). This belongs to Q(ω), hence it is a
polynomial expression in ω, of degree at most 19, with rational coefficients.

On the other hand, if P is the prime ideal of K over 〈π113〉, mentioned in Appendix B,6

then, by the discussion of Appendix A, there is an embedding K ↪→ KP = Q11(ωP), where
GP(ωP) = 0 for a specific second-degree factor GP(t) of G(t), irreducible over Q11; see Appendix
B. This embedding is characterized by ω 7→ ωP, so that the 11-adic roots of g(t) are

θ(i)(ωP) ∈ Q(ωP) = KP (i = 1, . . . , 5)

and, for every β ∈ F , if the i-th conjugate of β over Q is β(i)(ω) (see a few lines above), then

the embedding ω 7→ ωP maps β to β(i)(ωP).

If we work p-adically with p = 11, then, by θ(i), β(i), . . . we will understand θ(i)(ωP), β(i)(ωP), . . .;

and if we work p-adically with p = infinite prime, by θ(i), β(i), . . . we will understand θ(i)(ω), β(i)(ω), . . ..
Our discussion below applies to both cases of p.

Applying the i-th embedding to the relation (3.16) we obtain the i-th conjugate relation

x− yθ(i) = α(i)ε
(i)
1

a1
ε
(i)
2

a2
ε
(i)
3

a3
ε
(i)
4

a4
π

(i)
113

n1
.

Then, for i = i0, j, k, where i0, j, k ∈ {1, . . . , 5} are any three distinct indices, we obtain three
conjugate relations, analogous to the above. Eliminating x, y from the these three relations we
finally obtain (cf. [34, Section 7])

(3.17) λ := δ1

(
π

(k)
113

π
(j)
113

)n1 4∏
i=1

(
ε
(k)
i

ε
(j)
i

)ai
− 1 = δ2

(
π

(i0)
113

π
(j)
113

)n1 4∏
i=1

(
ε
(i0)
i

ε
(j)
i

)ai
,

where

(3.18) δ1 =
θ(i0) − θ(j)

θ(i0) − θ(k)
· α

(k)

α(j)
, δ2 =

θ(j) − θ(k)

θ(k) − θ(i0)
· α

(i0)

α(j)
.

Now and until the end of the paper we put

H = max{n1, |a1|, |a2|, |a3|, |a4|}
6See just above and below of relation (B.1).
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3.2.5. Equation (3.17) implies an upper bound n1 ≤ c13 logH. We will prove the inequality in
its title of this subsection, where c13 is given by (3.20). Our main tool is the important Theorem
3.2 due to Kunrui Yu which, given the algebraic numbers α1, . . . , αn and a prime p, provides
an upper bound for the p-adic valuation of αb11 · · ·αbnn − 1, for any b1, . . . , bn ∈ Z, in terms of
log max{3, |b1|, . . . , |bn|}.

We turn to the relation (3.17), which we view as an algebraic relation over Q11. According

to the discussion in Appendix B, the 11-adic roots θ(i) ∈ C11 of g(t) are identified with θi(ωP)
(i = 1, . . . , 5).

We choose the indices i0, j, k following the instructions in [34], bottom of p. 235 and beginning
of p. 236 up to Lemma 3. According to the discussion therein, since π113 corresponds to the
polynomial g3(t) whose root is θ5(ωP) (cf. end of Appendix B), we must choose i0 = 5; and
since θ1(ωP) and θ3(ωP) are (according to the end of Appendix B, again) roots of the quadratic
irreducible polynomial g1(t) ∈ Q11[t], we can choose j = 1 and k = 3. In view of [34, Lemma

3 (i)], ord11(π
(k)
113/π

(j)
113) = 0 and by [34, Corollary of Lemma 2 (i)], ord11(ε

(k)
i /ε

(j)
i ) = 0 for

i = 1, . . . , 4. Also, since θ(k), θ(j) are 11-adic roots of a second degree irreducible polynomial
over Q11, it follows, according to the second “bullet” in page 236 of [34], that ord11(δ1) = 0.
These facts will be used in the application of Theorem 3.2.

Also, the relation (13) of [34, Theorem 5] holds, which in our case reads ord11(λ) = ord11(δ2)+
n1

7. A computation shows that ord11(δ2) = 1/2 8, hence

(3.19) ord11(λ) = n1 + 1
2

Now we are ready to apply Theorem 3.2. With four minor corrections, this is Theorem 11.1 of
K. Hambrook’s thesis [18]. It is a consequence of Theorems 1 and 3 of [37] and the Lemma in
the Appendix of [36].

Theorem 3.2 (Kunrui Yu). Let α1, . . . , αn (n ≥ 2) be non-zero algebraic numbers and

K = Q(α1, . . . , αn), D = [K : Q].

Let p be a rational prime, P a prime ideal of the ring of integers of K lying above p and
eP = eK/Q(P), fP = fK/Q(P) the ramification index and residue class degree, respectively, of
P.
Now define d and f as follows:

If p = 2 then

d =

{
D if e2π/3 ∈ K
2D if e2π/3 6∈ K

, f =

{
fP if e2π/3 ∈ K
max{2, fP} if e2π/3 6∈ K

.

If p ≥ 3 and pfP ≡ 3 (mod 4) then

d = D, f = fP.

If p ≥ 3 and pfP ≡ 1 (mod 4) then

d =

{
D if e2π/4 ∈ K
2D if e2π/4 6∈ K

, f =

{
fP if e2π/4 ∈ K or p ≡ 1 (mod 4)

max{2, fP} if e2π/3 6∈ K and p ≡ 3 (mod 4)
.

7Actually, according to the relation (13) of [34, Theorem 5], n1 is multiplied by a positive integer h1, defined
in [34, Section 6], which is a divisor of the order of the ideal-class group. In our case, the ideal-class group is
trivial, hence h1 = 1.

8By (3.18) and (3.16) there are 56 possible values for δ2.
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Put

τ =
p− 1

p− 2
, κ =

⌈
log

(
2ep
p− 1

)
/ log p

⌉
, Q =


3 if p = 2

4 if p ≥ 3 and pf ≡ 1 (mod 4)

1 if p ≥ 3 and pf ≡ 3 (mod 4)

,

(κ1, κ2, κ3, κ4, κ5, κ6) =



(160, 32, 40, 276, 16, 8) if p = 2

(759, 16, 20, 1074, 8, 4) if p = 3, d ≥ 2

(537, 16, 20, 532, 8, 4) if p = 3, d = 1

(1473, 8τ, 10, 394τ, 8, 4) if p ≥ 5, eP = 1, p ≡ 1 (mod 4)

(1282, 8τ, 10, 366τ, 8, 4) if p ≥ 5, eP = 1, p ≡ 3 (mod 4), d ≥ 2

(1288, 8τ, 10, 396τ, 8, 4) if p ≥ 5, eP = 1, p ≡ 3 (mod 4), d = 1

(319, 16, 20, 402, 8, 4) if p = 5, eP ≥ 2

(1502, 16, 20, 1372, 8, 4) if p ≥ 7, eP ≥ 2, p ≡ 1 (mod 4)

(2190, 16, 20, 1890, 8, 4) if p ≥ 7, eP ≥ 2, p ≡ 3 (mod 4)

,

c2 =
(n+ 1)n+2dn+2

(n− 1)!

pf

(f log p)3
max{1, log d}max{log(e4(n+ 1)d), eP, f log p},

c′3 = κ1κ
n
2

(
n

f log p

)n−1 n∏
i=1

max

{
h(αi),

f log p

κ3(n+ 4)d

}
,

c′′3 = κ4(eκ5)np(n−1)κ
n∏
i=1

max

{
h(αi),

1

e2κ6pκd

}
.

Let b1, . . . , bn be rational integers and define

λ = αb11 · · ·α
bn
n − 1, B = max{3, |b1|, . . . , |bn|}.

If λ 6= 0 and ordP(αi) = 0 for i = 1, . . . , n, then

ordp(λ) < c′10 logB, 9 c′10 =
c2 min{c′3, c′′3}

Q · eP
.

Now we apply Theorem 3.2 to the λ given in (3.17), as interpreted in the beginning of this
section, with i0 = 5, j = 1, k = 3. Our application is briefly described in Table 4.

9We use the notation c′10 in order to conform with the notation of [34, page 238].
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Table 4. Application of Theorem 3.2

Notations in Theorem 3.2 Values in this paper

n 6
(α1, b1) (δ1, 1) [equation (3.18) with (i0, j, k) = (5, 1, 3)]

(α2, b2) (π
(3)
113/π

(1)
113, n1) [equation (3.17)]

(αi, bi), (i = 3, 4, 5, 6) (ε
(3)
i /ε

(1)
i , ai−2), (i = 3, 4, 5, 6) [equation (3.17)]

K K [Appendix B]

D 20
p 11

P P [Appendix B just above equation (B.1)]

(fP, eP) = (fK/Q(P), eK/Q(P)) (1, 2); [(B.1)]

B max{3, n1, |a1|, |a2|, |a3|, |a4|}
c′10 < 9.9 · 1030

A remark has its place here: By (3.16) and the definition of δ1 in (3.18) we see that δ1 runs
through a set of cardinality 28, therefore, for each value of δ1, we must compute the parameter
c′10. It turns out that, in all cases, c′10 < 9.9 · 1030 and this is mentioned in the above table.
Also, in the notation of [34], the use of Theorem 3.2 always implies c′11 = 0.

By writing a number of rather simple routines we automated the computations. Finally, by
setting c′10 ← maxδ1 c

′
10 and c′11 ← maxδ1 c

′
11 we find c′10 = 9.99 · 1030 and c′11 = 0.

By [34, relation (14)], n1 ≤ c13(logH + c14), where c13, c14 are explicitly computed from c′10

and c′11 following the simple instructions found on p. 238 of [34]. The difference between the
pairs (c13, c14) and (c′10, c

′
11), if any at all, is negligible in practice. Anyway, in our case, it turns

out easily that the two pairs coincide and, therefore,

(3.20) n1 ≤ c13(logH + c14), c13 = 9.99 · 1030, c14 = 0,

where

(3.21) H = max{n1, |a1|, |a2|, |a3|, |a4|}.

A computational remark. According to the instruction of [34, page 238], in order to compute
c13 from c′10 we need the least positive integer h such that ph is principal. In our case p is
already a principal ideal, therefore we take h = 1. In order to compute c14 from c′11 we need to
compute ord11(δ2) for the 56 values δ2 (cf. (3.17) and (3.18)). One shouldn’t expect difficulties
in carrying out such computations using magma or any other package specialized to Number
Theory.

3.2.6. First explicit bounds for H = max{n1, |a1|, |a2|, |a3|, |a4|} and n1. We will prove the nu-
merical upper bound (3.23) for H, based to E.M. Matveev’s lower bound for linear form in
(real/complex) logarithms of algebraic numbers; see Theorem 3.3 below. Then, as a straight-
forward consequence of (3.20), this will imply the numerical upper bound (3.24) for n1.

We focus our attention to 1 +λ, where λ is defined in relation (3.17). In this section we view
K embedded in the complex field C, so that the algebraic numbers appearing in λ are complex
numbers; actually, they are all real numbers, because all roots of g(t) are real. Note that the
indices i0, j, k figuring in (3.17) are any distinct indices from the set {1, . . . , 5}. We follow step
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by step the very explicit instructions of Sections 9 and 10 of [34] in order to compute a chain
of constants (in the order that are displayed below)

c15, c16 = 0.129, 10 c′17, c
′
18, c

′′
17, c

′′
18, c17, c18, c19, c20, c12, c21, c22.

This is a rather boring and cumbersome task if one performs the computations “by hand” (with
the aid of a pocket calculator). Fortunately, the instructions are programmable in magma
without much difficulty, so that the chain of computations is performed automatically. It turns
out that c22 = 14. According to the terminology of page 243 of [34], we are treating a “real
case”. Moreover, by page 244 of [34], if we assume that H > c22 = 14 (H is defined in (3.21)),
then 1 + λ is a positive real number and

(3.22) Λ = log(1 + λ) = log |δ1|+ n1 log

∣∣∣∣∣π(k)
113

π
(j)
113

∣∣∣∣∣+
4∑
i=1

ai log

∣∣∣∣∣α(k)
113

α
(j)
113

∣∣∣∣∣ .
By a strong and handy result of E.M. Matveev we can compute explicit constants c7, c8 such
that log(1+λ) > exp(−c7(logH+c8)). More specifically we have the Theorem 3.3 below, which
is a slight restatement of Theorem 2.1 of [24]. In this theorem log denotes an arbitrary but fixed
branch of the logarithmic function on C; if x is a positive real number, log x always means real
(natural) logarithm of x.

Theorem 3.3. ([24, Theorem 2.1]) Let Λ = b1 logα1 + · · · + bn logαn, where b1, . . . , bn ∈ Z
with bn 6= 0, and α1, . . . , αn are algebraic numbers of degree at most D, embedded in C, and
logα1, . . . , logαn are linearly independent over Z.
Consider A1, . . . , An satisfying

Ai ≥ max{Dh(αi), | logαi|} 1 ≤ i ≤ n,
where, in general, h(α) denotes the absolute logarithmic height of the algebraic number α. Set
κ = 1 if all αi’s are real; otherwise set κ = 2. Next, define

A = max
1≤i≤n

Ai/An, Ω = A1 · · ·An

and
B = max

1≤i≤n
|bi|.

Then
|Λ| > exp(−c7(logB + c8)),

where

c7 =
16

n!κ
en(2n+ 1 + 2κ)(n+ 2)(4(n+ 1))n+1(en/2)κ log(e4.4n+7n5.5D2 log(eD))D2Ω,

c8 = log(1.5eD log(eD)A).

Now we apply Theorem 3.3 to the linear form Λ = log(1 + λ) in (3.22). Following the
instructions of [34] (bottom of page 249 - beginning of page 250), we must consider Λ for all
i0 ∈ {1, . . . , 5}, and for each specific i0, the choice of the indices j, k is arbitrary, provided
that i0 6= j 6= k 6= i0. Note that the condition of Z-linear independence of the αi’s, imposed
by Theorem 3.3, in our case reads log(1 + λ) 6= 0. This is equivalent to λ 6= 0; we see that
this is true by viewing λ as the right-hand side of the relation (3.17). The application of
Theorem 3.3 in our case is briefly described in Table 5. In this table, (i0, j, k) runs through
the set {(1, 2, 3), (2, 1, 3), (3, 1, 2), (4, 1, 2), (5, 1, 2)}. We note that, the condition of Z-linear

10We give the value of c16, because this will play a role later.
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independence of the αi’s, imposed by Theorem 3.3, in our case reads log(1 + λ) 6= 0. This is
equivalent to λ 6= 0; we see that this is true by viewing λ as the right-hand side of the relation
(3.17).

Table 5. Application of Theorem 3.3 to log(1 + λ)

Notations in Theorem 3.3 Values in this paper

n 6
(α1, b1) (δ1, 1) [equation (3.18) with (i0, j, k) = (5, 1, 3)]

(α2, b2) (π
(3)
113/π

(1)
113, n1) [equation (3.17)]

(αi, bi), (i = 3, 4, 5, 6) (ε
(3)
i /ε

(1)
i , ai−2), (i = 3, 4, 5, 6) [equation (3.17)]

K K [Appendix B]

D 20
p 11
P P [Appendix B just above equation (B.1)]

(fP, eP) = (fK/Q(P), eK/Q(P)) (1, 2); [(B.1)]

B max{3, n1, |a1|, |a2|, |a3|, |a4|}
c7, c8 < 4.8626 · 1027, < 5.7864

We remark at this point that, actually, the values of c7, c8 which we obtain for the various
choices of (i0, j, k) differ “very little”, if they differ at all.

We11 continue to follow the instructions from the relation (24) of [34] onwards and compute
constants c23, c24, c25 and, finally, constants creal and c27, such that
• H = max{n1, |a1|, |a2|, |a3|, |a4|} < creal (see [34, Theorem 10]),
• |Λ| ≤ c27 exp{−c16 max1≤i≤4 |ai|} (see [34, relation (29)]).

Also, by [34, Corollary of Theorem 10], n1 ≤ c13(log creal+c14) and, in general, n1 is considerably
smaller than creal.
According to our computations, the maximum value for creal

12 is 1.3216 · · · × 1043, from which
we conclude that

(3.23) H < 1.3217 · 1043 =: K0

and

(3.24) n1 < 9.918312 · 1032 =: N0.

Also, c27 < 3.906653; this constant, along with c16 = 0.129 will be used in Subsection 3.2.7.
Computation time. The totality of computations that led to the bounds (3.23) and (3.24)

was about 8 minutes.

3.2.7. The first p-adic reduction. In this section we reduce the upper bound (3.24) by a process
we call p-adic reduction, with p = 11 in our case. For the basic facts we refer to [35] and [34,
Sections 12,14,15]. Given a rational prime p and a p-adic number x (in general, x belongs to a
finite extension of Qp), the p-adic logarithm of x is denoted by logp x and belongs to the same
extension of Qp in which x belongs.

11“We” means “our magma code”.
12As (i0, j, k) runs through the set {(1, 2, 3), (2, 1, 3), (3, 1, 2), (4, 1, 2), (5, 1, 2)}.



COMPLETE SOLUTION OF THE DIOPHANTINE EQUATION x2 + 5a · 11b = yn 141

We go back to the relations (3.17) and (3.18). According to the discussion in Appendix
B and, more specifically, the notations etc on page 148, we have an embedding K ↪→ KP,
where KP = Q11(ωP) is a quadratic extension of Q11 defined by the polynomial GP(t) =
t2 + (10744341441 + O(1110)) t + (9625552201 + O(1110)) = 0,13 which allows us to view the

θ(i)’s figuring in the above relations as elements of KP. According to our choice for i0, j, k,

made in page 136, (i0, j, k) = (5, 1, 3) and, consequently, θ(i0) = θ(5) = 7050162550 + O(1110),

θ(j) = θ(1) = (9038034724 +O(1110))ωP + (8245826831 +O(1110)), θ(k) = θ(3) = (4757114675 +
O(1110))ωP + (5113588460 +O(1110)). In the notation of page 136, these are the 11-adic roots

θ5(ωP), θ1(ωP) and θ3(ωP) of g(t), respectively14. By (3.19), ord11(λ) = n1 + 1
2 , therefore, by

[34, Lemma 12], ord11(Λ11) = n1 + 1
2 , where

Λ11 = log11 δ1 + n1 log11

(
π

(3)
113

π
(1)
113

)
+

4∑
i=1

ai log11

(
ε
(3)
i

ε
(1)
i

)
.

Because δ1 depends also on the choice of α (cf. relations (3.18) and (3.16)), there are 56 possibili-
ties for Λ11. Therefore, in what follows, we assume that, having chosen α ∈ {π5

2π
4
31π

z1
5 , π

5
2π32π

z1
5 :

0 ≤ z1 ≤ 27}, we compute the 11-adic logarithms appearing in Λ11; except for log11 δ1, the re-
maining logarithms are independent from α.

Note that the values of log11 above belong to KP and, therefore, they are of the form x0 +
x1ωP, where x0, x1 ∈ Qp. If we put

log11 δ1 = ρ0 + ρ1ωP, log11(π
(3)
113/π

(1)
113) = λ0 + λ1ωP, log11(ε

(3)
i /ε

(1)
i ) = µi0 + µi1ωP

(i = 1, 2, 3, 4), then Λ11 = Λ11,0 + Λ11,1ωP, where

Λ11,0 = ρ0 + n1λ0 +

4∑
i=1

aiµi0, Λ11,1 = ρ1 + n1λ1 +

4∑
i=1

aiµi1.

Following the instructions of [34, p.p. 256-257] we put for i = 0, 1:

Λ′11,i = −β0i − n1β1i − a1β2i − a3β3i + a4,

where,
β0,i = −ρi/µ4i, β1i = −λi/µ4i, βji = −µj−1,i/µ4i (j = 2, 3, 4).

We divided by ord11(µ4i), because ord11(µ4i) ≤ min{ord11(λ1), ord11(µ1i), . . . , ord11(µ4i)}.
Following the detailed instructions of [34, Section 15], we put W = dK0/N0e, and we choose

appropriately a number κ > 1 –this will become clear below– and an integer m such that

(3.25) 11mW = κK5
0 ,

15

Then, for i = 0, 1, we consider the lattice Γmi which is generated by the column-vectors of the
matrix 

W 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

β
(m)
1i β

(m)
2i β

(m)
3i β

(m)
4i 11m

 ,

13see Table 6 et. seq.
14The two remaining 11-adic roots of g(t) are θ2(ωP) = (517324682 + O(1110))ωP + (5431351847 + O(1110))

and θ4(ωP) = (2621442663 +O(1110))ωP + (7443205770 +O(1110)).
15The exponent 5 is equal to the number of the unknown exponents in (3.17).
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where, in general, for β ∈ Q11, we denote by β(m) the integer of the interval [0, 11m − 1] for

which ord11(β − β(m)) ≥ m. We also consider the column vector

yi =


0
0
0
0

−β(m)
0i

 .

Note that, in view of our remark after the definition of Λ11, there are 56 possible values for the
vector yi, but the lattices Γmi are independent from α.
Let c1, . . . , c5 be the column-vectors of an (ordered) LLL-reduced basis of Γmi and s1, . . . , s5 ∈ Q
be such that yi =

∑5
j=1 sjc5. Let j0 be the maximum index j ∈ {1, . . . , 5} for which sj 6∈ Z

and denote by ‖sj0‖ the distance of sj0 from the nearest to it integer. Finally, put

`(Γmi,yi) ≥

{
1
4 |c1| if yi = 0
1
4 ‖sj0‖·|c1| if yi 6= 0

No we apply [34, Proposition 15], which, in our case reads:

If

(3.26) `(Γmi,yi) >
√
WN2

0 + 4K2
0 ,

then n1 < m.16

Heuristically, when κ –and, accordingly by (3.25), alsom– are sufficiently large, it is “reasonable”
to expect that condition (3.26) is satisfied, which would imply an upper bound for n1. Choosing
in (3.25) κ = 100, so that m = 206, we check that the condition (3.26) is satisfied, for either
i = 0 or i = 1, for all but 10 values of yi; for the ten exceptional values of yi we take κ = 1000,
so that m = 207, and then (3.26) is satisfied.

As a consequence, we conclude that n1 ≤ 207.
Computation time. The computation cost for this reduction step was less than 1 minute.

3.2.8. The first reduction over R. We have the upper bound K0 = 1.32171 · 1043 for H =
max{n1, |a1|, |a2|, |a3|, |a4|} and, by the conclusion of Subsection 3.2.7, we already know that
n1 ≤ 207 =: N1. Thus, in (3.22), coefficients n1, a1, . . . , a4 of the linear form log(1 + λ) satisfy
n1 ≤ 207 and maxi |ai| ≤ K0. Referring to (3.22), let as put

Λ = log(1 + λ) = ρ+ n1λ1 +
4∑
i=1

aiµi,

where the meaning of the real numbers ρ, λ1, µ1 . . . , µ4 is obvious. Once again we stress the
fact that these six real numbers depend on the choice of the indices (i0, j, k) (cf. page 139), and
ρ = log |δ1| (cf. (3.22)) depends also on the choice of α (cf. relations (3.18) and (3.16)). Since
there are 5 choices for (i0, j, k) and 56 choices for α, this implies that there are 5 × 56 = 280
possibilities for the linear form Λ. Therefore, in what follows, we assume that, having chosen α ∈

16Actually, in accordance to [34, Proposition 15], the upper bound for n1 is (m− l)/h. By the fact that, over
11, the prime ideals of F are principal, and the definition of h in [34, page 234], we have h = 1. Also, l is a small
number, explicitly determined in page 257 of [34] and, more specifically, below the relation (32); in our case, it
turns out that l = 0.
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{π5
2π

4
31π

z1
5 , π

5
2π32π

z1
5 : 0 ≤ z1 ≤ 27} and (i0, j, k) ∈ {(1, 2, 3), (2, 1, 3), (3, 1, 2), (4, 1, 2), (5, 1, 2)},

we compute the real numbers ρ, λ1, µ1 . . . , µ4.
We follow the reduction process of [35], as presented in [34, Section 16]. We put W ′ =

dK0/N1e –this is independent from the above choices– and choose a number κ > 1 and an
integer C so that CW ′ ≈ κK5

0 .17 How we choose κ will become clear below; as it turns out in
practice, κ depends on α and (i0, j, k). We consider the lattice ΓC which is generated by the
column-vectors of the matrix 

W ′ 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
φ1 ψ1 ψ2 ψ3 ψ4

 ,

where φ1 = bCλ1c, ψi = bCµic (i = 1, . . . , 4). Also, we put φ0 = bCρc and consider the
column-vector

y =


0
0
0
0
−φ0

 .

As in the previous section, we compute an (ordered) LLL-reduced basis of ΓC , say c1, . . . , c5.
Let s1, . . . , s5 ∈ Q be the coefficients of y with respect to this basis, denote by j0 the maximum
index j ∈ {1, . . . , 5} for which sj 6∈ Z and by ‖sj0‖ the distance of sj0 from the nearest to it
integer. Finally, put

`(ΓC ,y) ≥

{
1
4 |c1| if y = 0
1
4 ‖sj0‖·|c1| if y 6= 0.

Following the instructions of [34, page 265] we put R = N1 + 4K0 + 1 and S = W ′2N2
1 + 3K2

0 .
By [34, Proposition 16]:

If `(ΓC ,y) ≥
√
R2 + S (∗)

then H ≤ 1

c16
{log c27 + logC − log(

√
`(ΓC ,y)2 − S −R)}. (∗∗)

Heuristically, one can argue that, if κ is sufficiently large and C = dκK5
0/W

′e, then it is

“reasonable” to expect that `(ΓC ,y) ≥
√
R2 + S and, consequently, an upper bound for H is

obtained from (∗∗), which is of the size of logK0.
To give an idea, if (i0, j, k) = (1, 2, 3) and we take κ = 100, C = 10187, then the condition (∗) is
satisfied for all α’s and, as α runs through all its possible values, the maximum bound (∗∗) is
229. If (i0, j, k) = (2, 1, 3) and κ = 100, C = 10187, then (∗) holds for all but 11 values of α. For
the 45 “successful” values of α the maximum bound (∗∗) is 229. For the 11 remaining values
the condition (∗) holds if we take κ = 500 and C = 10187; then the maximum upper bound (∗∗)
is 231.

In this way we finally obtain the upper bound H ≤ 231 =: K1, valid for all choices of α and
(i0, j, k) mentioned in the beginning of this section.
Computation time. At this stage, the computation time was less than half of a minute.

17As in Subsection 3.2.7, the exponent 5 is the number of the unknowns exponents in (3.17).
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3.2.9. Further reduction and final stage of resolution. We repeat the p-adic reduction process of
Subsection 3.2.7 with K0 ← K1 = 231 and N0 ← N1 = 207. This affects W and, consequently,
κ and m in (3.25), which now becomes “very small”. Thus, we obtain the new bound n1 ≤
N2 = 25, and this took less that 1 minute.
Next, applying the reduction process of Subsection 3.2.7 with K0 ← K1 = 231 and N1 ← N2,
implies H ≤ K2 = 41; this took a few seconds.

A third p-adic reduction step can improve a little bit the upper bound for n1. The process
of Subsection 3.2.7 with K0 ← K2 = 41 and N0 ← N2 = 25 implies n1 ≤ N3 = 21, and this
took around 1 second. Although we can make a further reduce to the bound of H, as well, and
obtain H ≤ 34, we will not use this.

Actually, we prefer to solve a set of Thue equations (3.15), with right-hand side c ∈ {−25345z111z2 :
0 ≤ z1 ≤ 27, z2 = 0 or 3 ≤ z2 ≤ 21}, using magma’s implementation of Bilu & Hanrot’s method
[7]. Remember that, as already mentioned a few lines below (3.15), no solutions exist when
c ∈ {−25345z111z2 : 0 ≤ z1 ≤ 27, 1 ≤ z2 ≤ 2}. Thus, we are left with 28 × 20 Thue equa-
tions, using the above implementation. This is the most expensive task; it took us about
7662 secs ≈ 2h 7′ 42′′. No solutions were found, hence, we have the following result:

Proposition 3.4. There are no solutions to the equation (3.5), hence, by Subsection 3.1, equa-
tion (1.2) with abx odd and n = 5 has no solutions. 2

Now, Propositions 2.1 and 3.4 complete the proof of Theorem 1.1.

Remark: Taking into account the computation cost at previous stages from Subsections 3.2.6
through 3.2.8, we see that the total computation time for the needs of Subsection 3.2 is less
than 2h.30′.

Appendix A. Working p-adically. Some general facts.

In this appendix we combine several facts which are scattered in the literature. Our basic
references are [8], [12], [14], [20], [25].

Let p be a rational prime. For every non-zero x ∈ Q we denote by vp(x) the exponent with
which p appears in the prime factorization of x and, as usually, the p-adic absolute value of x
is defined by |x|p = p−vp(x). We set, by convention, vp(0) = −∞, so that |0|p = 0. For x ∈ Q,
we also define ordp(x) = vp(x).
This extends to Qp. If x ∈ Qp and we write x in the standard p-adic representation x =∑∞

i=N aip
i (N ∈ Z, the ai’s are integers with 0 ≤ ai < p and aN 6= 0), then we define ordp(x) =

N and |x|p = p−N . Clearly, in the special case x ∈ Q, these definition agree with those given
above.
More generally, if x ∈ Ep, where Ep is a finite extension of Qp, of degree, say d, and td +

bd−1t
d−1 · · ·+ b1t+ b0 is the characteristic polynomial of x with respect to the extension Ep/Qp,

(bi ∈ Qp for i = 0, . . . , d− 1), then

(A.1) ordp(x) =
1

d
ordp(b0) =

1

d
ordp(NEp/Qp

(x)) and |x|p = p−ordp(x).

These definitions are independent from Ep; in particular, they coincide with the definitions of
ordp(x) and |x|p given at the beginning with x ∈ Qp.

Now we adopt a different point of view. Let

E = Q(ξ), where g(ξ) = 0 and g(t) ∈ Q[t] is monic and irreducible.
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We denote by OE the maximal order of E. Let

(A.2) pOE = pe11 · · · p
em
m

be the factorization of the principal ideal pOE into prime ideals of E, where the pi’s above are
distinct and ramification index eE/Q(pi) = ei > 0 for every i = 1, . . . ,m; we also denote by fi
the residual degree fE/Q(pi).
For every x ∈ E and every pi we denote by vpi(x) the exponent of pi in the prime ideal
factorization of xOE ; in particular, vpi(p) = ei. If pi is a principal ideal, say pi = πOE , then
we write vπ(x).

The polynomial g(t) factorizes into m distinct irreducible polynomials of Qp[t]:

(A.3) g(t) = g1(t) · · · gm(t).

Let

Epi = Qp(ξpi), where ξpi is defined by gi(ξpi) = 0;

actually, Epi is the completion of (E, | · |pi), where | · |pi is the absolute value of E corresponding

to the additive valuation vpi(·). There is a natural embedding E
φi
↪→ Epi mapping ξ to ξpi , which

allows us to view E as a subfield of Epi . The typical element x(ξ) ∈ E (where x[t] ∈ Q[t]) can
be viewed as an element of Epi if we identify x(ξ) with φi(x(ξ)). Formally, this means that we
view x(ξ) as the element x(ξpi) = x(t) + gi(t)Qp[t] ∈ Qp[t]/gi(t)Qp[t]. Then, according to (A.1),

(A.4) ordp(x(ξ)) =
1

[Qp(ξpi) : Qp]
ordp(NQp(ξpi )/Qp

(x(ξpi))) and |x(ξ)|p = p−ordp(x(ξ)).

The above discussion makes clear that the value of ordp(x(ξ)) depends on pi. Consequently, if
i 6= j and x(ξ) ∈ E, then, the value of ordp(x(ξ)) may vary, depending on whether we view E
as a subfield of Epi or of Epj .

The enumeration of the pi’s in (A.2) and the gi’s in (A.3) can be done in such a way that

(A.5) deg gi = [Epi : Qp] = eifi and vpi(x(ξ)) = ei · ordp(x(ξ)).

The second relation above implies that, for the typical element x(ξ) ∈ E (where x[t] ∈ Q[t]),
the following is true: x(ξ) is divisible by pi iff ordp(x(ξpi)) > 0 which, in turn, is equivalent
to the statement that the constant term of the characteristic polynomial of x(ξpi) over Qp has
positive ordp. Having established this enumeration, we have for every x(ξ) ∈ E:

(A.6) vpi(x(ξ)) =
eE/Q(pi)

[Epi : Qp]
ordp(NEpi/Qp

(x(ξpi))) = eE/Q(pi) · ordp(x(ξ)).

In practice, the above mentioned correspondence pi ↔ gi is carried out by a magma routine
which we wrote based on the following: For j = 1, . . . ,m, consider the “two-element represen-
tation” of pj , namely, pj = pOE +hj(ξ)OE , where hj(t) ∈ Q[t], and fix any i ∈ {1, . . . ,m}. For
j = 1, . . . ,m, compute φi(hj(ξ)) = hj(ξpi) and the characteristic polynomial χj(t) of hj(ξpi) with
respect to the extension Epi/Qp. For exactly one index j the ordp of the constant term of χj(t)
is positive. The polynomial gj(t), for this specific j, corresponds to the ideal pi. This we do for
any i = 1, . . . ,m and we establish the one-to-one correspondence {p1, . . . , pm} ↔ {g1, . . . , gm}.
By permuting the indices of g1, . . . , gm, if necessary, we establish the one-to-one correspondence
pi ↔ gi which satisfies (A.5) and (A.6).
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Appendix B. Working in K

In order to apply the method of [34] we need to work in an extension K of F in which g(t)
has at least three distinct roots. Thus, in general, we do not need the whole splitting field of
g(t) over F . In our case, however, the Galois group of g(t) is of order 20, which implies that
K is the splitting field of g(t) over F . Using magma we find out that K = Q(ω), where ω is a
root of the polynomial

G(t) =

t20 + 780t19 + 248030t18 + 39929580t17 + 3046440525t16 + 18210793968t15 − 13729990391320t14

+ 752551541981520t13 + 8605950990819730t12 + 1708764818389209000t11

+ 23308084571944423284t10 − 1404817549102176551640t9 − 35442768652652017430190t8

+ 375805034836819117590960t7 + 16191084883780784798260200t6

+ 30210122048192693893581552t5 − 2113554835538935196795743635t4

− 12364486598313473303834175060t3 + 25061666765667764525027943390t2

+ 278757784774895111708136641100t+ 427756623168133431059207412321.

Of course, K is a Galois extension. By OK we denote the maximal order of K and by OF
the maximal order of F . The roots θ(i) (i = 1, . . . , 5) of g(t) are polynomial expressions of ω

with rational coefficients. Thus θ(i) = θi(ω) ∈ Q[ω], where θi(t) ∈ Q[t] (i = 1, . . . , 5). Each θ(i)

corresponds to an embedding ψi : F ↪→ K characterized by ψi(θ) = θi(ω). Then we can view
F as subfield of K in five ways, by identifying F with ψi(F ). For our computations we can
arbitrarily choose the embedding ψi, but, once we choose it, we must keep it fixed. Magma
computes the embeddings ψi; rather arbitrarily, when it considers F as a subfield of K, our
magma session implicitly uses the embedding ψ5; i.e. as a subfield of K, F is identified with
ψ5(F ). For simplicity, we set ψ = ψ5 and avoid the use of superscript/subscript indicating the
conjugation. Then, extending a prime ideal p of OF to the ideal pOK means, the following: Let
p = pOF + h(θ)OF , where h(θ) ∈ Q[θ]. Then pOK = pOK + h(ψ(θ))OK . Magma computes

ψ(θ) = ψ5(θ) = θ(5) = θ5(ω):

θ5(ω) =(109949833761153867182006233162830218735318443ω19

+ 85209181362831884900908863253209941719229099772ω18

+ 26843948030443532446996152295591813313759057989280ω17

+ 4256032326064110742980882546282193567817773030947507ω16

+ 313740861737738480045017056015360916332191517809963652ω15

+ 448056667342462133472342261671551993343950346279488008ω14

− 1510732666058952542367528947242709391406430475149001889048ω13

− 75203582469112061453856831841769761124516215292521423604700ω12

+ 1315665925830026167841281970821852638550108379556176872190482ω11

+ 181102009414236143682774128780867507407780245434648419322814672ω10

+ 1669796300877028395254905627635289010395439563221417145651022616ω9

− 162206235802302893664200291374667388423732969287959076428108697406ω8

(continued on next page)
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(continued from previous page)

− 3096949958783354342722100732857399558416026343530279487756804602460ω7

+ 56131367252940396214847119246725578907696249119733671305047923800344ω6

+ 1504180072707173996628600619493969793943259186258161149867325499759064ω5

− 3870840446117907139295078483933668999054374262639172467797695558733756ω4

− 213744087631757677190145693131224085047423871295167330938194597435156069ω3

− 352243194516613905751693267069064334504141157799975445500242914720886380ω2

+ 4494640381465135578890041723352987174508368793027744613522589459354871816ω

+ 10018536620467342924854600525808560481514235129562992768169198074640026531)/

23750735994552570259738911035979918362684670692062523272986624000000000.

For the ideal p = π113OF , obviously, we can take h(θ) = π113 (see page 132). Then

ψ(h(θ)) = ψ(π113) =(4378482585825381431566239057028627160970028037ω19

+ 3396229499207087892836807551803460134822567613017ω18

+ 1071214373586764983689778732938427724586732483076327ω17

+ 170145388685753978342778727714777154218418254512908043ω16

+ 12588645126248857287103560864595388726070407650893086772ω15

+ 23291648519661572328486403102949754117988678982445451332ω14

− 60338282775505500617169124951383242755661107414046130424148ω13

− 3031547893595987199227070326893238313728050147362743168899908ω12

+ 51530222400182570158994336776484627607851706804827046320630198ω11

+ 7282924550357450053556161972634939332060481531424832236222347982ω10

+ 69407725895185343408814814665447944190629387800816493362801270434ω9

− 6522081891215060359860869744209143119462208244901441175704137508646ω8

− 126498537591831789061901120743476135204565837943425968840309704817756ω7

+ 2266682290068533497159436879932180463046527604540137185016229550764276ω6

+ 61296290267956300004998582874965020844943081524921068036926148986534364ω5

− 165499773355462341124868225890607890561889109853343804837744925708526164ω4

− 8698248530644221957092224575657663153179204605475867759713929659343969939ω3

− 11520188167294592917194821184972443593645584955137753402305064016274508639ω2

+ 173158801650947255768584220314522267452080115712427401970346621418344586479ω

+ 378768220799897336478183837425696328863796308850264844412883432915449692851)/

1520047103651364496623290306302714775211818924292001489471143936000000000.

Our magma routine, mentioned below the equation (A.6), returns the factorization 11OK =∏10
i=1 P

2
i , where the residual degree fK/Q(Pi) = 1 for every i = 1, . . . , 10. Moreover, for every

i = 1, . . . , 10, the routine computes:
• An element hi ∈ OK , such that Pi = 11OK + hiOK .



148 G. SOYDAN AND N. TZANAKIS

• The factorization of G(t) =
∏10
i=1Gi(t) into irreducible polynomials over Qp. For i = 1, . . . , 10,

the irreducible polynomial Gi(t) ∈ Qp[t] corresponds to Pi in the sense explained in Appendix
A. As expected, degGi(t) = 2 for every i = 1, . . . , 10.
In table 6 we give the data mentioned in the above two “bullets”. The element hi is identified
with a 20-tuple: hi = (ci1, . . . , ci20) means that

hi =

20∑
j=1

cijβj ,

where β1, . . . , β20 is an integral basis of K/Q, explicitly calculated by magma. For the polyno-
mial Gi(t) we write Gi(t) = (γi1, γi0), by which we mean that Gi(t) = t2 + γi1t + γi0. In the
columns of the γij ’s we write their 11-adic approximations, (rational integers) with precision
O(1110).

Table 6. 11OK =
∏10
i=1 P

2
i

Pi = 11OK + hiOK KPi = Q11[t]/〈t2 + γi1t+ γi0〉
i hi γi1 γi0

1 (5, 8, 10, 5, 3, 3, 7, 0, 5, 5, 0, 3, 2, 10, 0, 2, 10, 2, 1, 7) 11244468595 6668815422
2 (6, 2, 0, 0, 7, 10, 4, 0, 6, 6, 4, 5, 2, 10, 0, 2, 10, 2, 1, 7) −169320583 10491152974
3 (6, 9, 8, 0, 6, 6, 1, 5, 2, 0, 6, 5, 2, 10, 0, 2, 10, 2, 1, 7) −9236124994 5583083423
4 (1, 5, 8, 3, 7, 5, 10, 6, 9, 0, 9, 3, 2, 10, 0, 2, 10, 2, 1, 7) −6126278749 7582171800
5 (2, 1, 10, 4, 6, 7, 8, 6, 2, 9, 1, 3, 7, 6, 5, 10, 7, 2, 10, 7) 10744341441 −10666285673
6 (8, 4, 10, 3, 5, 4, 3, 4, 4, 1, 5, 3, 4, 0, 8, 2, 1, 0, 8, 7) −3779293982 290904043
7 (10, 8, 2, 1, 0, 9, 10, 4, 8, 4, 4, 8, 10, 2, 1, 7, 9, 4, 8, 7) −669447737 7802303026
8 (10, 1, 10, 2, 6, 10, 6, 7, 2, 1, 1, 0, 5, 1, 6, 10, 5, 3, 8, 7) −12083236915 −10106323842
9 (8, 7, 9, 1, 9, 10, 10, 3, 3, 0, 8, 10, 10, 4, 6, 6, 6, 8, 8, 7) 10744341441 9625552201
10 (6, 0, 10, 3, 6, 2, 7, 9, 3, 7, 6, 1, 8, 10, 0, 1, 9, 1, 2, 9) −669447737 −12489534848

Now, for p = π113OF we have to know the factorization of pOK ; of course, the prime
ideals of OK in this factorization belong to {P1, . . . ,P10}. For this purpose it suffices to
compute vPi(ψ(π113)) for i = 1, . . . , 10. This we do easily using magma. We find out that
vPi(ψ(π113)) = 0 for i = 1, . . . , 8 and vPi(ψ(π113)) = 2 for i = 9, 10; hence π113OF = P2

9 P
2
10.

According to the above we put P = P9, so that

(B.1) eK/Q(P) = 2, fK/Q(P) = 1

GP(t) = G9(t) = t2 + γ91t+ γ90.

Working p-adically in K means working in KP = Q11(ωP) ∼= Q11[t]/〈GP(t)〉, where each root

θ(i) (i = 1, . . . , 5) is identified with θi(ωP).
We have g3(θ5(ωP)) = 0. Indeed, we have the following commutative diagram of monomor-

phisms:

F
ψ=ψ5−−−−→ Kyφ yΦ

Fp
Ψ−−−−→ KP
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Here Fp = Qp(θp), where θp = 7 + 2 · 11 + 2 · 112 + 10 · 113 + 7 · 114 + · · · ∈ Q11, is the root of
g3(t).18 The natural embeddings φ and Φ are in accordance with the general discussion a few
lines below the relation (A.3). Thus, φ(θ) = θp, Φ(ω) = ωP and, consequently,

Ψ(θp) = Φ ◦ ψ5 ◦ φ−1(θp) = Φ ◦ ψ5(θ) = Φ(θ5(ω)) = θ5(Φ(ω)) = θ5(ωP).

Therefore, g3(θ5(ωP)) = g3(Ψ(θp)) = Ψ(g3(θp)) = Ψ(0) = 0. Further, using magma we see
that the (11-adic) roots of g1(t) are θi(ωP) with i = 2, 4, and the roots of g2(t) are θi(ωP) with
i = 1, 3.

In Subsection 3.2.5, where we view (3.17) as a relation in KP (which simply means that we
apply Φ to (3.17)) we will choose i0 = 5, j = 1 and k = 3, following the instructions at bottom
of p. 235 of [34].

References

[1] F.S. Abu Muriefah, Y. Bugeaud, The Diophantine equation x2 +C = yn: a brief overview,

Revis. Col. Math. 40 (2006), no. 1, 31-37.
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