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A TWO-PARAMETER FINITE FIELD ERDOS-FALCONER DISTANCE
PROBLEM

PHILIPP BIRKLBAUER AND ALEX IOSEVICH

ABSTRACT. We study the following two-parameter variant of the Erdés-Falconer distance prob-
lem. Given E, F C IF];'H, I > k > 2, the k + I-dimensional vector space over the finite field with
q elements, let By (E, F) be given by

/

{Ule" =9Il lz” = y"|l) : @ = (', 2") € B,y = (y',y") € o',y € Fg, ",y € Fy}.

We prove that if |E||F| > Cq*t*' ! then By, (FE, F) 2 F; x F;. Furthermore this result is
sharp if k is odd. For the case of | = k = 2 and ¢ a prime with ¢ = 3 mod 4 we get that for
every positive C there is ¢ such that

if |B||F| > Cq® 3, then |Bao(E, F)| > cq°.

1. INTRODUCTION

The Erdos-Falconer distance problem in Fg is to determine how large E' C Fg needs to be to

ensure that
A(E) ={llz —yl[ : z,y € B},

with ||z]| = 22 + 23+ --- + a:?l, is the whole field Fy, or at least a positive proportion thereof.
Here and throughout, [F, denotes the field with ¢ elements and IFZ is the d-dimensional vector
space over this field.

The distance problem in vector spaces over finite fields was introduced by Bourgain, Katz
and Tao in [2]. In the form described above, it was introduced by the second listed author of

this paper and Misha Rudnev ([5]), who proved that A(E) = F, if |E| > 2q%. It was shown
in [4] that this exponent is essentially sharp for general fields when d is odd. When d = 2, it
was proved in [3] that if if E C F? with |E| > cq%, then |A(E)| > C(c)q. We do not know if

improvements of the % exponent are possible in even dimensions > 4. We also do not know

if improvements of the % exponent are possible in any even dimension if we wish to conclude
that A(E) = Fy, not just a positive proportion.

In this paper we introduce a two-parameter variant of the Erdés-Falconer distance problem.
Given E,F C F’;H , 1 >k > 2, the k + [-dimensional vector space over the finite field with ¢
elements, define By (E, F') by

{(l2" = oIl lz" = y"I) s @ = («,2") € B,y = (y,y") € Fia sy € Fy,a",y" € Fe}.
This formulation introduces immediate interesting geometric complications. For example, let
k=1=2,let
E={(2,0,0) : |lz] = 1} and FF = {(0,0,y) : [[y|[ = 1}.
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Then By o(E, F') = {(1,1)}. However, we are going to see that if |E||F| is sufficiently large,
then By (E, F) = Fy x Fq. Our first result is the following.

Theorem 1.1. Let E, F C F’(;”, 1 >k>2. Thereis a C >0 such that
if |E||F| > Cq"*"*! then By (E, F) 2 F; x F;.

If k is odd, this result is best possible, up to the value of the constant C.

When £ is even, we can hope to improve the exponent a bit. We are able to accomplish this
in the case k =1 = 2. Our second result is the following.

Theorem 1.2. Let q be a prime with ¢ =3 mod 4. For every positive C there is ¢ such that
for E,F C F2+2

if |E||F| > Cq®*3, then |Bya(E, F)| > cq?.

While this result probably is not sharp, we show the exponent cannot go below 6.

2. PROOF OF THEOREM [L.1]

We begin with a quick review of Fourier analytic preliminaries.

Let x be a nontrivial additive character on F,. Given f : F‘ql — C, define

fm) =g~ x(—z-m)f(x).

zerd

Observe that

f@) =" x(ax-m)f(m),

meFrd

ST FmF =t S @)

d d
rnqu xEFq
and

Z x(z-m) =0 if m # 0 and ¢¢ otherwise.

zelFd

Lemma 2.1. Let S¢71 = {z ¢ Fe: x| = t}, where ||z]| = 2 + - +a3. Ift #0 and m # 0,
then

d+1

S (m)| < 2477
Lemma 2.2. With the notation above,

1S4 = ¢4+ O(¢?72).

For a proof of Lemma and Lemma see [0]. See also [8] and [6]. See [9] on a spectral
graph theory viewpoint on similar phenomena.
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We now move on to the proof of Theorem. Let E(X), F(Y) denote the indicator functions
of E, F, respectively, where X = (2/,2") and Y = (y/,4"). For some a,b € F} we consider

> E(X)F(Y)
Il 1=
—Zsk N’ —y)sy (@ =y E(X)F(Y)

= Z SEHm) S, m" )X (@ = o) - m)x((a" — y") - m") E(X)F(Y)

X, Y,m',m"
= Y SFYm)S " )x((X = Y) - M)E(X)F(Y)
X, Y,m/ ,m”
(1) 2(k+1) Zsk 1 Sl 1( H)E(M)ﬁ(M)

We shall now break up the sum into three pieces. The first piece is the sum over m/ = m” = 0.
The second piece is the sum over m’ # 0,m” # 0. The third sum is over m’ = 0,m” # 0 or
m” =0,m' #0.

1. The term m’ = 0,m” = 0. Plugging this condition into we obtain
(2) EJIFIISe 1S5 Ha ™ .

2.2. The term m’ # 0,m” # 0. Using Cauchy-Schwarz we see that
2

> SeTHm)S T EQOEM)| < Y 18N ) Sy (" PO IEW
/#()#m// /#O#m// /#O#n//
Now for the first sum we see by using Lemma [2.1] and Plancherel that it is bounded by

k41 1\ 2 = 2 _ ke
(207 (207%) S IF Q) = 160414247+ |
M
And again by Plancherel, we notice

Y B <q*E
n/#(j#n//

Therefore,

PE ST G ) S ) B F(M)| < 49" 1 /TEIF.
/#O#m//

2.3. The term m’ # 0,m” = 0. We obtain

(3) 2(k+1) —l|Sl g Z Sk L ( ’O)ﬁ(m 0)

/#0



24 PHILIPP BIRKLBAUER AND ALEX IOSEVICH

Very similarly to the previous case we see
2

Z :S'\gfl(m')ﬁ (m’,ﬁ)ﬁ (m/76> < Zﬂ S\g*l(m/)ﬁ (m/,6> 2 ZH‘E <n’76>‘2

m/#£0 m/#0 n’'#0

ar [ () S| ()
m/ n’

And furthermore we have the following
Lemma 2.3. If E C Fit! then
5 2\ |2 k-1
3 ‘E (m’,O)’ < g Bl
m'€Fk

Proof. This is a simple application of Plancherel. However, we write out the argument from
scratch for the reader’s convenience.

Z ‘E’ (m’,ﬁ) ‘2 _ Z q—2(k+l) Z X((ff, . y')m’)E(m’,x”)E(y',y”)

m/eFk m/eFk w’,y’ng
x”,y”G]Ff]
—k—21 AN/, roon
=q > EB(,2") B« y")
/ IFk
T el <1
:c”,y”Equ
—k—1
<q |E|. O

So now we can bound by

_ _ —k—1 g k=1 _
PED g S 2g T gL /JENF] = 2¢ 2 |SEY VBN F.

Putting everything together we see that

|Sa 18,
qk

ql

(4) > EX)F(Y) = |E||F| +D,

o'~ |=as "y |=b

k-1 _ =1 _ k+l
Dl <2¢72 VIE|FIIS; [ +2¢ 2 VIE|F||SS [ +4g 2 ' VIE[F].
By a direct calculation (remembering that [ > k) and using Lemma the right hand side
of is positive if

where

|BJ[F| > (14 0(1))16¢"#*1,
as desired.
Finally for the sharpness of this result in the case k odd, we need the following theorem from

[4].
Theorem 2.4. There exists ¢ >0 and E C IFZ, d odd, such that
|E| > cq% and A(E) # F,.
Let Bh C IF]; be a set as in theorem above and FEs = Ffl. With £ = F; x Ey we get

204+k+1

|E| > cq~ 2 and By (E,E) = A(E1) X A(Es) = A(Eq) x Fy # Fy x Fy since A(Eq) # Fy.
Hence our result is sharp if k£ is odd.
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3. PROOF OF THEOREM [1.2]
For a,b € F, let

s(a,b) == [{(a/sa",y\y") € Ex F: [l — /|| = a, |2 — "] = B} .

We observe that

2
2| )2
Y s(ab) | =IEPIFP,
a,bel,
while at the same time Cauchy-Schwarz yields
2
> s(a,b) | <|Baa(E F)| > s(ab)’.
a,belfy a,bely
Hence,
EP’|F|?
) O <iBuaE.F))

Za,bemq s(a,b)? ~

so an upper bound on Zmbqu s(a,b)? will provide a lower bound for By o(E, F).
Now

s(a,b)? = ‘{(w’,x”,y/,y”,z’,z",w’,w”) EExXxFxExF:

o' =9/ = a =l = /||, 2" — 9"l = b=|}" = "I},
SO
(6) Z s(a,b)? = ‘{(:c’,x”,y’,y”,z',z”,w’,w”) EEXFxExF:
a,bel,
o = 5/l = 112" = w'll, 2" = o)l = 2" = w"I1}.

We now proceed as in [1]. For 0, ¢ € SO»(F,) we define 7“5% :F2 xF2 — C as

ry o u") = ‘{(ac',x", ZYeEEXE 2 -0 =u, 2" — ) = u”}‘ )

P

Therefore

(7) Z Tg(p(u/,u”)rgjw(u',u”) =

u ul! €2

‘{(a:’,x”,z',z",y’,y”,w’,w”) cE2x F2.4 — 9 = y/ _ Gw’,m” _ QDZ// _ y// _ cpw”}‘ )

25
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And we can also calculate the Fourier-transform

p—

TOE (m/,m”) _ q—4 Z 7ﬂE (u',u”)x(—ul om! — m//)

730 07%9
u u' €F2
— q—4 § : X(_ul . m/ _ ul/ . ml/) 2 E(CE’,CE”)E(Z’, Z/l)
o u'' €F2 m’,:c”,z’,z”eﬂ?g

' -0z =u’
2 —pz! =

_ q—4 Z X(_(ml _ 92/) om — (x// _ <pz") . m”)E(m', x//)E(2/7 Z”)

a:’,a:”,z’,z”EFg

= *E(m',m")E(0— m/, o= 'm").

Now our key observation is the following result from [I], contained in the proof of their
Theorem 1.5.

Lemma 3.1. Let q a prime power, ¢ =3 mod 4. Then for x,y € F2\ {0} we have ||z|| = ||y|
if and only if there is a unique 8 € SO(F,) such that x = Oy.

This observation allows us to make the following connection

Z s(a,b)? < Z r(f@(u’,u”)rgcp(u’,u”)

a,beF, W ' €2
0,050 (Fy)
by comparing @ and and seeing that
2" — /|| = ||z — | = 30 € SO2(F,) : 2’ — 02 =y — 6uw'.

Next, we observe

S RO ) = S S xUMIE (M) ST (UN)E(N)

UcF2 xIF2 UEcF2xF2 McF} NeF}
= D> i (M) 3 i (N) Y x(UN + M)
MeF} NeFi UEcF2 xF2
4 — —_—
=q" Y (M) (M)
MeF:

and it remains to find a bound for the following quantity:
E 1o F /A /AN /E\ / " /F\
Z Z ry (s ut)rg o(u,u”) = q Z Z T (M, m7)rg (', m")
0,0€502(Fq) v ,u'" €F2 0,0€S502(Fq) m/,m" €F2

(8) =q¢7 ) S E(m! m")EOm!, om!)F(m!,m")F(0m', om")
m! m" €F2 0,p€S02 (Fq)

where we replaced #~! and ¢! by 6 and ¢ respectively in the last step.

Again we will need to split the sum into three terms
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3.1. The term m/ = 0, m” = 0. Plugging into we get
Sd NZIEE P 4 2 )2 2
¢ Y |E(0,0) [F(0,0)]" = ¢ *E]’|FI’|SO2(F,) >,
0,p€S02(Fq)

3.2. The term m’ # 0,m” # 0.

q*? Z E(m’, m”)ﬁ(m’, m') Z E(Hm’, gpm”)ﬁ(Gm', om'")
m/,m" €F2\{0} 0,0€S02(Fq)

=q"? Z Z E(m/, m”)ﬁ(m’7 m') Z E(Gm’, cpm”)ﬁ(ﬂm’, om”)

a,b€F\{0} [[m/[|=a,|lm" || =b 0,p€502(Fq)

—q'? Z Z E(m/,m"F(m/,m")

a,beF\{0} |[|m/[|=a,||m" ||=b
where we used Lemma [3.1]in the last step.
We continue with a trivial estimate on one of the inner factors

2

q*? Z Z E(m’,m”)ﬁ(m’,m”)

a,beF\{0}[[|m/||=a,|[m""||=b

<2 3 S Ema)P S Fw )

a,b€Fg\{0} [m/[|=a,||m"||=b In"ll=a,lln"lI=b

§q12 Z Z |E(m/’m/l)|2 Z |ﬁ(n/7n

a,b€Fg\{0} ||m/[|=a,[m""||=b n/ /' €FZ\{0}

:q12 q74 Z E(u’,u”) q—4 Z F(u',u”)

u’,u”EFg u’,u”E]FZ

=q"|B||F|.

3.3. The term m’ # 0,m” = 0. As in the two previous cases we see

@y > Em,0)E(@0m,0)F(m/,0)F (6m',0)
m/€F2\{0} 0,p€502(Fy)

9) =q?SOx(F)| Y Em/,0)F(m/,0) > E(6m/,0)F(6m’,0).

m/€F2\{0} 0€S0,(Fy)

2

//)|2

27
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We will deal with the inner sum first. Let 0 # a = ||m/||, then

0eSO2(Fq) lm||=a

IN
]
=
3
=
]
)
S
=

(10)

Lemma 3.2. For £ C FZ, 0#aclF, we get
>° IE(m,0)P < 32¢7°|B]>.
[m|l=a

—,

Proof. With the notation introduced in Lemmaand g : F2 — C where g(m) = E’(m, 0)Sa(m)
we can write this as

3" E(m,0)Sa(m)gtm) = 3" ¢ Y x(=a’-m)E(2,2")Sa(m)g(m)

2 2 !l 2
melFg mely x' x" €Fy

=q¢2 Y | Y B2 | Sag(@),

2 2
'€F; \z"€F3

Using Holder’s Inequality with ¢ = %, r = 4 we can bound this by

ol
Al

(11) <2 Y| Y E@." > [Sagla)*

! 2 " 2 / 2
T E]Fq x E]Fq T G]Fq

We will first find an estimate for the latter factor. By using the definition of the Fourier
transform we get:

(12) > 1Sg@)P=q% D> gwgv)gu)g).
x’ng u,v,u’ v €Sy
utv=u'+v’

Here we use the Fefferman trick. For fixed u,v € Sy, u # —v we want to find v/,v" € S, such
that u+v = v/ +v'. In other words we want to find u’ € S, such that (u+v—u') € Sg, so v’ is
in the intersection of the circles {x € F2 : [|z]| = a} and {z € F} : |z — (u + v)|| = a} which has
at most two solutions as the circles are not identical (since u + v # 0). But we already know
two solutions, namely u and v. So either v/ = v and v =vor v/ =v and v/ = u. If u = —v we
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get u' € S, and v = —u/. Therefore (and by noting that g(—u) = g(u)) we can bound by

DD 20(wa(v)gw)g(v) + D g(w)g(—u)g(w)g(—u)

q
u,u' €Sy

uU,VES,

3¢7% ) lg(w)Plg(v

u,VES,

=3¢" (Z g(U)I2>

’U,ESa
2

=3¢ > IE.0)]

[[ul|=a

The other factor of can be dealt with as follows

3
4\ 1

3
S5 swan) - [ S5 pwn)( 5 swan) | <
x'€F2 \z" €F32 x'€F2 \z" €F32 @

Therefore we have

N[

~ = 1 9 1, 3 _3 ~ =
> Em,0)? <3i¢2q2|Elig 2 [ > |E(m,0)
lm||=a lm||=a

SO
S 1B(m,0)? < 33¢ ¢ E|2¢7% = 33¢7°|E|=.

[ml=a

Continuing from (9) and using and Lemma we see

> E(m/,0)F(m/,0)

m/€F2\ {0}

> E(m/,0)F(0m,0)
0€S02(Fy)

q'%|SO2(Fy)]

<q|SOy(F)l| 3" E(m!,0)F(m',0) - 33¢ O|E|T|F7].
m/€F2\{0}

Next we need to deal with

S |Ee,0)Fen0) SOE@LD” S [Fm.0))

m! €F2\{0} m/€F2\{0}

< Vg ¥|E[|F].

And finally we need the following, which can be obtained from Lemma 6.24. in [7]

IN

m/ €F2\{0}

Lemma 3.3. For a prime power q with ¢ =3 mod 4 we have
|SO2(Fy)| = q+ 1.
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Putting those results together we find that @D is bounded by
12 —4 -6 173 |3 3im2 s
Cq~qq "VIE|F|q " |E[*|F|* = Cq’|E[*|F|*.
So we can bound the whole sum by
s
¢*|E||F| + C(IE|F])* + ¢ |BP*|F*|SO2(F,) .

Therefore we get from

3
[E||F| (E]IF])* q¢*
3¢t 7 3C¢* 7 3|SOq(F,)|?

< |B22(E, F)|.

Hence it is enough that (with some unspecified constants c)

3
2 (|EHF‘)4 5 3 20
cq” < 308 < ¢’ < (|B||F|)* < cq¢3 <|E||F|
since in this case also 20
EUF e o
3¢* q*

Remark 3.4 (Sharpness of results). Let p a prime, with p = 3 mod 4. Consider E = ]Ff7 x L,
where

L={(a,0):a€Fy0<a<p' =}
Then |E| ~ p>~¢ and |A(L)| &~ 2p' ¢, so |Ba2(E, E)| = o(p?). Hence the 6 + 2 exponent in

Theorem is potentially not best possible, but we definitely cannot go below 6.

il
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