
BULLETIN OF THE
HELLENIC MATHEMATICAL SOCIETY
Volume 61, 2017 (21–30)

A TWO-PARAMETER FINITE FIELD ERDŐS-FALCONER DISTANCE

PROBLEM

PHILIPP BIRKLBAUER AND ALEX IOSEVICH

Abstract. We study the following two-parameter variant of the Erdős-Falconer distance prob-
lem. Given E,F ⊂ Fk+l

q , l ≥ k ≥ 2, the k + l-dimensional vector space over the finite field with
q elements, let Bk,l(E,F ) be given by

{(‖x′ − y′‖, ‖x′′ − y′′‖) : x = (x′, x′′) ∈ E, y = (y′, y′′) ∈ F ;x′, y′ ∈ Fk
q , x
′′, y′′ ∈ Fl

q}.

We prove that if |E||F | ≥ Cqk+2l+1, then Bk,l(E,F ) ⊇ F∗q × F∗q . Furthermore this result is
sharp if k is odd. For the case of l = k = 2 and q a prime with q ≡ 3 mod 4 we get that for
every positive C there is c such that

if |E||F | > Cq6+
2
3 , then |B2,2(E,F )| > cq2.

1. Introduction

The Erdős-Falconer distance problem in Fdq is to determine how large E ⊂ Fdq needs to be to
ensure that

∆(E) = {||x− y|| : x, y ∈ E},
with ||x|| = x21 + x22 + · · · + x2d, is the whole field Fq, or at least a positive proportion thereof.

Here and throughout, Fq denotes the field with q elements and Fdq is the d-dimensional vector
space over this field.

The distance problem in vector spaces over finite fields was introduced by Bourgain, Katz
and Tao in [2]. In the form described above, it was introduced by the second listed author of

this paper and Misha Rudnev ([5]), who proved that ∆(E) = Fq if |E| > 2q
d+1
2 . It was shown

in [4] that this exponent is essentially sharp for general fields when d is odd. When d = 2, it

was proved in [3] that if if E ⊂ F2
q with |E| ≥ cq

4
3 , then |∆(E)| ≥ C(c)q. We do not know if

improvements of the d+1
2 exponent are possible in even dimensions ≥ 4. We also do not know

if improvements of the d+1
2 exponent are possible in any even dimension if we wish to conclude

that ∆(E) = Fq, not just a positive proportion.
In this paper we introduce a two-parameter variant of the Erdős-Falconer distance problem.

Given E,F ⊂ Fk+lq , l ≥ k ≥ 2, the k + l-dimensional vector space over the finite field with q
elements, define Bk,l(E,F ) by

{(‖x′ − y′‖, ‖x′′ − y′′‖) : x = (x′, x′′) ∈ E, y = (y′, y′′) ∈ F ;x′, y′ ∈ Fkq , x′′, y′′ ∈ Flq}.
This formulation introduces immediate interesting geometric complications. For example, let

k = l = 2, let
E = {(x, 0, 0) : ||x|| = 1} and F = {(0, 0, y) : ||y|| = 1}.
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Then B2,2(E,F ) = {(1, 1)}. However, we are going to see that if |E||F | is sufficiently large,
then Bk,l(E,F ) = Fq × Fq. Our first result is the following.

Theorem 1.1. Let E,F ⊆ Fk+lq , l ≥ k ≥ 2. There is a C > 0 such that

if |E||F | > Cqk+2l+1 then Bk,l(E,F ) ⊇ F∗q × F∗q .

If k is odd, this result is best possible, up to the value of the constant C.

When k is even, we can hope to improve the exponent a bit. We are able to accomplish this
in the case k = l = 2. Our second result is the following.

Theorem 1.2. Let q be a prime with q ≡ 3 mod 4. For every positive C there is c such that
for E,F ⊆ F2+2

q

if |E||F | > Cq6+
2
3 , then |B2,2(E,F )| > cq2.

While this result probably is not sharp, we show the exponent cannot go below 6.

2. Proof of Theorem 1.1

We begin with a quick review of Fourier analytic preliminaries.

Let χ be a nontrivial additive character on Fq. Given f : Fdq → C, define

f̂(m) = q−d
∑
x∈Fd

q

χ(−x ·m)f(x).

Observe that

f(x) =
∑
m∈Fd

q

χ(x ·m)f̂(m),

∑
m∈Fd

q

|f̂(m)|
2

= q−d
∑
x∈Fd

q

|f(x)|2

and ∑
x∈Fd

q

χ(x ·m) = 0 if m 6= ~0 and qd otherwise.

Lemma 2.1. Let Sd−1t = {x ∈ Fdq : ‖x‖ = t}, where ‖x‖ = x21 + · · ·+ x2d. If t 6= 0 and m 6= ~0,
then

|Ŝd−1t (m)| ≤ 2q−
d+1
2 .

Lemma 2.2. With the notation above,

|Sd−1t | = qd−1 +O(qd−2).

For a proof of Lemma 2.1 and Lemma 2.2, see [5]. See also [8] and [6]. See [9] on a spectral
graph theory viewpoint on similar phenomena.
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We now move on to the proof of Theorem 1.1. Let E(X), F (Y ) denote the indicator functions
of E,F , respectively, where X = (x′, x′′) and Y = (y′, y′′). For some a, b ∈ F∗q we consider∑

‖x′−y′‖=a;‖x′′−y′′‖=b

E(X)F (Y )

=
∑
X,Y

Sk−1a (x′ − y′)Sl−1b (x′′ − y′′)E(X)F (Y )

=
∑

X,Y,m′,m′′

Ŝk−1a (m′)Ŝl−1b (m′′)χ((x′ − y′) ·m′)χ((x′′ − y′′) ·m′′)E(X)F (Y )

=
∑

X,Y,m′,m′′

Ŝk−1a (m′)Ŝl−1b (m′′)χ((X − Y ) ·M)E(X)F (Y )

= q2(k+l)
∑
M

Ŝk−1a (m′)Ŝl−1b (m′′)Ê(M)F̂ (M).(1)

We shall now break up the sum into three pieces. The first piece is the sum over m′ = m′′ = ~0.
The second piece is the sum over m′ 6= ~0,m′′ 6= ~0. The third sum is over m′ = ~0,m′′ 6= ~0 or
m′′ = ~0,m′ 6= ~0.

2.1. The term m′ = ~0,m′′ = ~0. Plugging this condition into (1) we obtain

(2) |E||F ||Sk−1a ||Sl−1b |q
−k−l.

2.2. The term m′ 6= ~0,m′′ 6= ~0. Using Cauchy-Schwarz we see that∣∣∣∣∣∣
∑

m′ 6=~06=m′′̂
Sk−1a (m′)Ŝl−1b (m′′)Ê(M)F̂ (M)

∣∣∣∣∣∣
2

≤
∑

m′ 6=~06=m′′
|Ŝk−1a (m′)Ŝl−1b (m′′)F̂ (M)|2

∑
n′ 6=~06=n′′

|Ê(N)|2.

Now for the first sum we see by using Lemma 2.1 and Plancherel that it is bounded by(
2q−

k+1
2

)2 (
2q−

l+1
2

)2∑
M

|F̂ (M)|
2

= 16q−(k+l+2)q−k−l|F |.

And again by Plancherel, we notice∑
n′ 6=~06=n′′

|Ê(N)|2 ≤ q−k−l|E|.

Therefore,

q2(k+l)

∣∣∣∣∣∣
∑

m′ 6=~06=m′′
Ŝk−1a (m′)Ŝl−1b (m′′)Ê(M)F̂ (M)

∣∣∣∣∣∣ ≤ 4q
k+l
2
−1√|E||F |.

2.3. The term m′ 6= ~0,m′′ = ~0. We obtain

q2(k+l) · q−l|Sl−1b |
∑
m′ 6=~0

Ŝk−1a (m′)Ê
(
m′,~0

)
F̂
(
m′,~0

)
.(3)
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Very similarly to the previous case we see∣∣∣∣∣∣
∑
m′ 6=~0

Ŝk−1a (m′)Ê
(
m′,~0

)
F̂
(
m′,~0

)∣∣∣∣∣∣
2

≤
∑
m′ 6=~0

∣∣∣Ŝk−1a (m′)F̂
(
m′,~0

)∣∣∣2 ∑
n′ 6=~0

∣∣∣Ê (n′,~0)∣∣∣2
≤ 4q−k−1

∑
m′

∣∣∣F̂ (m′,~0)∣∣∣2∑
n′

∣∣∣Ê (n′,~0)∣∣∣2
And furthermore we have the following

Lemma 2.3. If E ⊂ Fk+lq then ∑
m′∈Fk

q

∣∣∣Ê (m′,~0)∣∣∣2 ≤ q−k−l|E|.
Proof. This is a simple application of Plancherel. However, we write out the argument from
scratch for the reader’s convenience.∑

m′∈Fk
q

∣∣∣Ê (m′,~0)∣∣∣2 =
∑
m′∈Fk

q

q−2(k+l)
∑

x′,y′∈Fk
q

x′′,y′′∈Fl
q

χ((x′ − y′)m′)E(x′, x′′)E(y′, y′′)

= q−k−2l
∑
x′∈Fk

q

x′′,y′′∈Fl
q

E(x′, x′′)E(x′, y′′)︸ ︷︷ ︸
≤1

≤ q−k−l|E|. �

So now we can bound (3) by

q2(k+l) · q−l|Sl−1b | · 2q
−k−1

2 q−k−l
√
|E||F | = 2q

k−1
2 |Sl−1b |

√
|E||F |.

Putting everything together we see that

(4)
∑

‖x′−y′‖=a;‖x′′−y′′‖=b

E(X)F (Y ) = |E||F | |S
k−1
a |
qk

|Sl−1b |
ql

+D,

where
|D| ≤ 2q

k−1
2

√
|E||F ||Sl−1b |+ 2q

l−1
2

√
|E||F ||Sk−1a |+ 4q

k+l
2
−1√|E||F |.

By a direct calculation (remembering that l ≥ k) and using Lemma 2.2, the right hand side
of (4) is positive if

|E||F | > (1 + o(1))16qk+2l+1,

as desired.
Finally for the sharpness of this result in the case k odd, we need the following theorem from

[4].

Theorem 2.4. There exists c > 0 and E ⊂ Fdq , d odd, such that

|E| ≥ cq
d+1
2 and ∆(E) 6= Fq.

Let E1 ⊂ Fkq be a set as in theorem above and E2 = Flq. With E = E1 × E2 we get

|E| ≥ cq
2l+k+1

2 and Bk,l(E,E) = ∆(E1) × ∆(E2) = ∆(E1) × Fq 6= Fq × Fq since ∆(E1) 6= Fq.
Hence our result is sharp if k is odd.
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3. Proof of Theorem 1.2

For a, b ∈ Fq let

s(a, b) := |{(x′, x′′, y′, y′′) ∈ E × F : ‖x′ − y′‖ = a, ‖x′′ − y′′‖ = b}|.

We observe that  ∑
a,b∈Fq

s(a, b)

2

= |E|2|F |2,

while at the same time Cauchy-Schwarz yields ∑
a,b∈Fq

s(a, b)

2

≤ |B2,2(E,F )|
∑
a,b∈Fq

s(a, b)2.

Hence,

(5)
|E|2|F |2∑
a,b∈Fq

s(a, b)2
≤ |B2,2(E,F )|,

so an upper bound on
∑

a,b∈Fq
s(a, b)2 will provide a lower bound for B2,2(E,F ).

Now

s(a, b)2 =
∣∣∣{(x′, x′′, y′, y′′, z′, z′′, w′, w′′) ∈ E × F × E × F :

‖x′ − y′‖ = a = ‖z′ − w′‖, ‖x′′ − y′′‖ = b = ‖z′′ − w′′‖
}∣∣∣,

so ∑
a,b∈Fq

s(a, b)2 =
∣∣∣{(x′, x′′, y′, y′′, z′, z′′, w′, w′′) ∈ E × F × E × F :(6)

‖x′ − y′‖ = ‖z′ − w′‖, ‖x′′ − y′′‖ = ‖z′′ − w′′‖
}∣∣∣.

We now proceed as in [1]. For θ, ϕ ∈ SO2(Fq) we define rEθ,ϕ : F2
q × F2

q → C as

rEθ,ϕ(u′, u′′) =
∣∣{(x′, x′′, z′, z′′) ∈ E × E : x′ − θz′ = u′, x′′ − ϕz′′ = u′′}

∣∣ .
Therefore

(7)
∑

u′,u′′∈F2
q

rEθ,ϕ(u′, u′′)rFθ,ϕ(u′, u′′) =

∣∣{(x′, x′′, z′, z′′, y′, y′′, w′, w′′) ∈ E2 × F 2 : x′ − θz′ = y′ − θw′, x′′ − ϕz′′ = y′′ − ϕw′′}
∣∣ .
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And we can also calculate the Fourier-transform

r̂Eθ,ϕ(m′,m′′) = q−4
∑

u′,u′′∈F2
q

rEθ,ϕ(u′, u′′)χ(−u′ ·m′ − u′′ ·m′′)

= q−4
∑

u′,u′′∈F2
q

χ(−u′ ·m′ − u′′ ·m′′)
∑

x′,x′′,z′,z′′∈F2
q

x′−θz′=u′
x′′−ϕz′′=u′′

E(x′, x′′)E(z′, z′′)

= q−4
∑

x′,x′′,z′,z′′∈F2
q

χ(−(x′ − θz′) ·m′ − (x′′ − ϕz′′) ·m′′)E(x′, x′′)E(z′, z′′)

= q4Ê(m′,m′′)Ê(θ−1m′, ϕ−1m′′).

Now our key observation is the following result from [1], contained in the proof of their
Theorem 1.5.

Lemma 3.1. Let q a prime power, q ≡ 3 mod 4. Then for x, y ∈ F2
q \ {~0} we have ‖x‖ = ‖y‖

if and only if there is a unique θ ∈ SO2(Fq) such that x = θy.

This observation allows us to make the following connection∑
a,b∈Fq

s(a, b)2 ≤
∑

u′,u′′∈F2
q

θ,ϕ∈SO2(Fq)

rEθ,ϕ(u′, u′′)rFθ,ϕ(u′, u′′)

by comparing (6) and (7) and seeing that

‖x′ − y′‖ = ‖z′ − w′‖ =⇒ ∃θ ∈ SO2(Fq) : x′ − θz′ = y′ − θw′.

Next, we observe∑
U∈F2

q×F2
q

rEθ,ϕ(U)rFθ,ϕ(U) =
∑

U∈F2
q×F2

q

∑
M∈F4

q

χ(UM)r̂Eθ,ϕ(M)
∑
N∈F4

q

χ(UN)r̂Fθ,ϕ(N)

=
∑
M∈F4

q

r̂Eθ,ϕ(M)
∑
N∈F4

q

r̂Fθ,ϕ(N)
∑

U∈F2
q×F2

q

χ(U(N +M))

= q4
∑
M∈F4

q

r̂Eθ,ϕ(M)r̂Fθ,ϕ(M)

and it remains to find a bound for the following quantity:∑
θ,ϕ∈SO2(Fq)

∑
u′,u′′∈F2

q

rEθ,ϕ(u′, u′′)rFθ,ϕ(u′, u′′) = q4
∑

θ,ϕ∈SO2(Fq)

∑
m′,m′′∈F2

q

r̂Eθ,ϕ(m′,m′′)r̂Fθ,ϕ(m′,m′′)

= q12
∑

m′,m′′∈F2
q

∑
θ,ϕ∈SO2(Fq)

Ê(m′,m′′)Ê(θm′, ϕm′′)F̂ (m′,m′′)F̂ (θm′, ϕm′′)(8)

where we replaced θ−1 and ϕ−1 by θ and ϕ respectively in the last step.

Again we will need to split the sum into three terms
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3.1. The term m′ = ~0,m′′ = ~0. Plugging into (8) we get

q12
∑

θ,ϕ∈SO2(Fq)

|Ê(~0,~0)|
2
|F̂ (~0,~0)|

2
= q−4|E|2|F |2|SO2(Fq)|2.

3.2. The term m′ 6= ~0,m′′ 6= ~0.

q12
∑

m′,m′′∈F2
q\{~0}

Ê(m′,m′′)F̂ (m′,m′′)
∑

θ,ϕ∈SO2(Fq)

Ê(θm′, ϕm′′)F̂ (θm′, ϕm′′)

=q12
∑

a,b∈Fq\{0}

∑
‖m′‖=a,‖m′′‖=b

Ê(m′,m′′)F̂ (m′,m′′)
∑

θ,ϕ∈SO2(Fq)

Ê(θm′, ϕm′′)F̂ (θm′, ϕm′′)

=q12
∑

a,b∈Fq\{0}

∣∣∣∣∣∣
∑

‖m′‖=a,‖m′′‖=b

Ê(m′,m′′)F̂ (m′,m′′)

∣∣∣∣∣∣
2

where we used Lemma 3.1 in the last step.
We continue with a trivial estimate on one of the inner factors

q12
∑

a,b∈Fq\{0}

∣∣∣∣∣∣
∑

‖m′‖=a,‖m′′‖=b

Ê(m′,m′′)F̂ (m′,m′′)

∣∣∣∣∣∣
2

≤q12
∑

a,b∈Fq\{0}

∑
‖m′‖=a,‖m′′‖=b

|Ê(m′,m′′)|2
∑

‖n′‖=a,‖n′′‖=b

|F̂ (n′, n′′)|2

≤q12
 ∑
a,b∈Fq\{0}

∑
‖m′‖=a,‖m′′‖=b

|Ê(m′,m′′)|2
 ∑

n′,n′′∈F2
q\{~0}

|F̂ (n′, n′′)|2

≤q12
 ∑
m′,m′′∈F2

q

|Ê(m′,m′′)|2
 ∑

n′,n′′∈F2
q

|F̂ (n′, n′′)|2


=q12

q−4 ∑
u′,u′′∈F2

q

E(u′, u′′)

q−4 ∑
u′,u′′∈F2

q

F (u′, u′′)


=q4|E||F |.

3.3. The term m′ 6= ~0,m′′ = ~0. As in the two previous cases we see

q12
∑

m′∈F2
q\{~0}

∑
θ,ϕ∈SO2(Fq)

Ê(m′,~0)Ê(θm′,~0)F̂ (m′,~0)F̂ (θm′,~0)

= q12|SO2(Fq)|
∑

m′∈F2
q\{~0}

Ê(m′,~0)F̂ (m′,~0)
∑

θ∈SO2(Fq)

Ê(θm′,~0)F̂ (θm′,~0).(9)



28 PHILIPP BIRKLBAUER AND ALEX IOSEVICH

We will deal with the inner sum first. Let 0 6= a = ‖m′‖, then

∣∣∣∣∣∣
∑

θ∈SO2(Fq)

Ê(θm′,~0)F̂ (θm′,~0)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
‖m‖=a

Ê(m,~0)F̂ (m,~0)

∣∣∣∣∣∣
≤
√ ∑
‖m‖=a

|Ê(m,~0)|
2 ∑
‖n‖=a

|F̂ (n,~0)|
2
.(10)

Lemma 3.2. For E ⊂ F2
q, 0 6= a ∈ Fq we get

∑
‖m‖=a

|Ê(m,~0)|2 ≤ 3
1
2 q−6|E|

3
2 .

Proof. With the notation introduced in Lemma 2.1 and g : F2
q → C where g(m) = Ê(m,~0)Sa(m)

we can write this as

∑
m∈F2

q

Ê(m,~0)Sa(m)g(m) =
∑
m∈F2

q

q−4
∑

x′,x′′∈F2
q

χ(−x′ ·m)E(x′, x′′)Sa(m)g(m)

= q−2
∑
x′∈F2

q

 ∑
x′′∈F2

q

E(x′, x′′)

 Ŝag(x′).

Using Hölder’s Inequality with q = 4
3 , r = 4 we can bound this by

≤ q−2

∑
x′∈F2

q

 ∑
x′′∈F2

q

E(x′, x′′)

 4
3


3
4 ∑

x′∈F2
q

|Ŝag(x′)|4
 1

4

.(11)

We will first find an estimate for the latter factor. By using the definition of the Fourier
transform we get:

∑
x′∈F2

q

|Ŝag(x′)|4 = q−6
∑

u,v,u′,v′∈Sa

u+v=u′+v′

g(u)g(v)g(u′)g(v′).(12)

Here we use the Fefferman trick. For fixed u, v ∈ Sa, u 6= −v we want to find u′, v′ ∈ Sa such
that u+ v = u′+ v′. In other words we want to find u′ ∈ Sa such that (u+ v−u′) ∈ Sa, so u′ is
in the intersection of the circles {x ∈ F2

q : ‖x‖ = a} and {x ∈ F2
q : ‖x− (u+ v)‖ = a} which has

at most two solutions as the circles are not identical (since u + v 6= 0). But we already know
two solutions, namely u and v. So either u′ = u and v′ = v or u′ = v and v′ = u. If u = −v we
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get u′ ∈ Sa and v′ = −u′. Therefore (and by noting that g(−u) = g(u)) we can bound (12) by

q−6

 ∑
u,v∈Sa

2g(u)g(v)g(u)g(v) +
∑

u,u′∈Sa

g(u)g(−u)g(u′)g(−u′)


≤3q−6

∑
u,v∈Sa

|g(u)|2|g(v)|2

=3q−6

(∑
u∈Sa

|g(u)|2
)2

=3q−6

 ∑
‖u‖=a

|Ê(u,~0)|2
2

.

The other factor of (11) can be dealt with as follows∑
x′∈F2

q

 ∑
x′′∈F2

q

E(x′, x′′)

 4
3


3
4

=

∑
x′∈F2

q

 ∑
x′′∈F2

q

E(x′, x′′)

 ∑
x′′∈F2

q

E(x′, x′′)

 1
3


3
4

≤ q
1
2 |E|

3
4 .

Therefore we have

∑
‖m‖=a

|Ê(m,~0)|2 ≤ 3
1
4 q−2q

1
2 |E|

3
4 q−

3
2

 ∑
‖m‖=a

|Ê(m,~0)|2
 1

2

so ∑
‖m‖=a

|Ê(m,~0)|2 ≤ 3
1
2 q−4q|E|

3
2 q−3 = 3

1
2 q−6|E|

3
2 . �

Continuing from (9) and using (10) and Lemma 3.2 we see

q12|SO2(Fq)|

∣∣∣∣∣ ∑
m′∈F2

q\{~0}

Ê(m′,~0)F̂ (m′,~0)

∣∣∣∣ ∑
θ∈SO2(Fq)

Ê(θm′,~0)F̂ (θm′,~0)

∣∣∣∣
∣∣∣∣∣

≤q12|SO2(Fq)|

∣∣∣∣∣∣∣
∑

m′∈F2
q\{~0}

Ê(m′,~0)F̂ (m′,~0) · 3
1
2 q−6|E|

3
4 |F |

3
4

∣∣∣∣∣∣∣ .
Next we need to deal with∑

m′∈F2
q\{~0}

∣∣∣Ê(m′,~0)F̂ (m′,~0)
∣∣∣ ≤√√√√ ∑

m′∈F2
q\{~0}

|Ê(m′,~0)|
2 ∑
m′∈F2

q\{~0}

|F̂ (m′,~0)|
2

≤
√
q−8|E||F |.

And finally we need the following, which can be obtained from Lemma 6.24. in [7].

Lemma 3.3. For a prime power q with q ≡ 3 mod 4 we have

|SO2(Fq)| = q + 1.
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Putting those results together we find that (9) is bounded by

Cq12qq−4
√
|E||F |q−6|E|

3
4 |F |

3
4 = Cq3|E|

5
4 |F |

5
4 .

So we can bound the whole sum (8) by

q4|E||F |+ Cq3
(
|E||F |

) 5
4 + q−4|E|2|F |2|SO2(Fq)|2.

Therefore we get from (5)

min

 |E||F |3q4
,

(
|E||F |

) 3
4

3Cq3
,

q4

3|SO2(Fq)|2

 ≤ |B2,2(E,F )|.

Hence it is enough that (with some unspecified constants c)

cq2 ≤
(
|E||F |

) 3
4

3Cq3
⇐⇒ cq5 ≤

(
|E||F |

) 3
4 ⇐⇒ cq

20
3 ≤ |E||F |

since in this case also
|E||F |

3q4
≥ cq

20
3

q4
≥ cq2.

Remark 3.4 (Sharpness of results). Let p a prime, with p ≡ 3 mod 4. Consider E = F2
p × L,

where

L = {(a, 0) : a ∈ Fp, 0 ≤ a ≤ p1−ε}.
Then |E| ≈ p3−ε and |∆(L)| ≈ 2p1−ε, so |B2,2(E,E)| = o(p2). Hence the 6 + 2

3 exponent in
Theorem 1.2 is potentially not best possible, but we definitely cannot go below 6.
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spaces over finite fields and the Erdős-Falconer distance conjecture, Trans. Amer. Math. Soc. 363 (2011), no.
6, 3255–3275.
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