A LIMITED-RANGE CALDERÓN-ZYGMUND THEOREM

LOUKAS GRAFAKOS AND CODY B. STOCKDALE

Abstract. For a limited range of indices p, we obtain $L^p(\mathbb{R}^n)$ boundedness for singular integral operators whose kernels satisfy a condition weaker than the typical Hörmander smoothness estimate. These operators are assumed to be bounded (or weakly bounded) on $L^s(\mathbb{R}^n)$ for some index s. Our estimates are obtained via interpolation from the appropriate weak-type estimates. We provide two proofs of this result. One proof is based on the Calderón-Zygmund decomposition, while the other uses ideas of Nazarov, Treil, and Volberg.

1. Introduction

The classical theory of singular integral operators was introduced by Calderón and Zygmund in [3] and says that for certain kernels defined on $\mathbb{R}^n \setminus \{0\}$, the weak-type $(1, 1)$ bound holds for the associated singular integral operator, assuming that an $L^s(\mathbb{R}^n)$ bound is known for some $1 < s \leq \infty$. Hörmander extended this theory in [9] to more general kernels K satisfying the smoothness condition

$$[K]_H := \sup_{y \in \mathbb{R}^n} \int_{|x| \geq 2|y|} |K(x - y) - K(x)| \, dx < \infty.$$

The Hörmander condition is an $L^1(\mathbb{R}^n)$-type smoothness condition and has some variants. For example, Watson introduced the following $L^r(\mathbb{R}^n)$ versions in [18]: for $1 \leq r \leq \infty$, we say a kernel K is in the class H^r if

$$[K]_{H^r} := \sup_{R > 0} \sup_{y \in \mathbb{R}^n} \sum_{m=1}^{\infty} (2^m R)^{\frac{n}{r'}} \left[\int_{|x| \geq 2^m R} \int_{|x| < 2^m + 1 R} |K(x - y) - K(x)|^r \, dx \, dy \right]^{\frac{1}{r}} < \infty,$$

where r' is the Hölder conjugate of r. Observe that Watson’s condition coincides with Hörmander’s condition when $r = 1$, and for $r_1, r_2 \in [1, \infty]$ with $r_1 \leq r_2$,

$$H^{r_2} \subseteq H^{r_1} \subseteq H^1 = H.$$

In this paper, we focus on a different set of $L^r(\mathbb{R}^n)$-adapted conditions defined as follows.

Definition 1. Let $1 \leq r \leq \infty$. A kernel K defined on $\mathbb{R}^n \setminus \{0\}$ is in the class H_r if

$$[K]_{H_r} := \sup_{R > 0} \left[\frac{1}{v_n R^n} \int_{|y| \leq R} \left(\int_{|x| \geq 2R} |K(x - y) - K(x)|^r \, dx \right)^{\frac{1}{r}} \, dy \right]^{\frac{1}{r}} < \infty,$$

where v_n is the volume of the unit ball $B(0, 1)$ in \mathbb{R}^n.

Date: Submitted 26 June 2019; Accepted 9 August 2019.
2010 Mathematics Subject Classification. 42B20.
Key words and phrases. Singular integrals, weak-type estimates, Calderón-Zygmund theory.
The second author would like to acknowledge the Simons Foundation.

54
Notice that this condition coincides with the Hörmander condition when $r = \infty$. Moreover, for $r_1, r_2 \in [1, \infty]$ with $r_1 \leq r_2$,

$$H = H_\infty \subseteq H_{r_2} \subseteq H_{r_1},$$

meaning the H_r conditions are weaker than Hörmander’s smoothness condition.

We prove boundedness results for the associated singular integral operators.

Definition 2. Let $K \in H_r$ for some $1 \leq r \leq \infty$ and suppose K satisfies the size estimate $|K(x)| \leq \frac{A}{|x|^r}$ for all $x \neq 0$. We associate K with a linear operator T given by

$$Tf(x) = \int_{\mathbb{R}^n} K(x-y)f(y) \, dy$$

for smooth functions f and $x \not\in \text{supp} f$.

Notice that this definition also makes sense if f is an integrable, compactly supported function and $x \not\in \text{supp} f$. Moreover, there is no unique way to define Tf in terms of K for general functions f (see the relevant discussions in [2, 6, 14]).

If $K \in H = H_\infty$, Hörmander proved that given $1 < s \leq \infty$, $L^s(\mathbb{R}^n)$ bounds for T imply the weak-type $(1, 1)$ bound, and hence $L^p(\mathbb{R}^n)$ bounds for all $1 < p < \infty$. In this note, we prove the following variant of this result, where weak-type $(1, 1)$ is replaced by weak-type (q, q).

Theorem 1. Let $1 \leq q < \infty$, $K \in H_q'$, and $|K(x)| \leq \frac{A}{|x|^r}$ for all $x \neq 0$. If the associated singular integral operator T is bounded on $L^s(\mathbb{R}^n)$ for some $s \in (q, \infty]$ with bound B, then T maps $L^q(\mathbb{R}^n)$ to $L^{q, \infty}(\mathbb{R}^n)$ with bound at most a constant multiple of $B + [K]_{H_q'}$. That is,

$$\|Tf\|_{L^{q, \infty}(\mathbb{R}^n)} := \sup_{\alpha > 0} \alpha \{\|Tf\| > \alpha\}^{\frac{1}{q}} \leq C_{n, s, q} (B + [K]_{H_q'}) \|f\|_{L^q(\mathbb{R}^n)}$$

for all $f \in L^q(\mathbb{R}^n)$.

We give two proofs of Theorem 1. The first proof uses the $L^q(\mathbb{R}^n)$ version of the Calderón-Zygmund decomposition and is an adaptation of the classical proof given in [3]. The second proof is motivated by Nazarov, Treil, and Volberg’s proof for the weak-type $(1, 1)$ inequality in the nonhomogeneous setting, given in [11]. Adaptations of the proof in the nonhomogeneous setting are needed in our setting; some modifications include ideas that can be found in [14]. See [15, 17] for other applications of the Nazarov, Treil, and Volberg technique to multilinear and weighted settings. Refer to [8, 10, 12] for related results regarding multilinear and weighted Calderón-Zygmund theory.

By interpolation we obtain the following corollary.

Corollary 1. Under the hypotheses of Theorem 1, the operator T is bounded on $L^p(\mathbb{R}^n)$ for p in the interval $(\min(s', q), \max(q', s))$.

Remark 1. The constant A does not appear in the conclusion of Theorem 1. The estimate $|K(x)| \leq \frac{A}{|x|^r}$ is only needed to ensure that the operator T is well-defined for a dense class of functions.

If $q > 1$ and $s < \infty$, then the interval $(\min(s', q), \max(q', s))$ is properly contained in $(1, \infty)$. Hence in this case, we obtain $L^p(\mathbb{R}^n)$ estimates for a limited-range of values of p. Prior to this work, other “limited-range” versions of the Calderón-Zygmund theorem appeared in Baernstein and Sawyer [1], Carbery [3], Seeger [13], and Grafakos, Honzik, Ryabogin [7].
2. Calderón-Zygmund Decomposition Method

The first proof of Theorem 1 relies on the $L^q(\mathbb{R}^n)$ version of the Calderón-Zygmund decomposition. See [5,6,14] for details on the decomposition.

Proof. Fix $f \in L^q(\mathbb{R}^n)$ and $\alpha > 0$. We will show that

$$|\{(Tf) > \alpha\}| \leq C_{n,s,q}(B + [K]_{L^q'})^n\alpha^{-q}\|f\|_{L^q(\mathbb{R}^n)}^q,$$

Apply the $L^q(\mathbb{R}^n)$-form of the Calderón-Zygmund decomposition to f at height $\gamma\alpha$ (the constant $\gamma > 0$ will be chosen later), to write $f = g + b = g + \sum_{j=1}^{\infty} b_j$, where

1. $\|g\|_{L^\infty(\mathbb{R}^n)} \leq 2^n\gamma\alpha$ and $\|g\|_{L^q(\mathbb{R}^n)} \leq \|f\|_{L^q(\mathbb{R}^n)}$,
2. the b_j are supported on pairwise disjoint cubes Q_j satisfying $\sum_{j=1}^{\infty} |Q_j| \leq (\gamma\alpha)^{-q}\|f\|_{L^q(\mathbb{R}^n)}^q$,
3. $\|b_j\|_{L^q(\mathbb{R}^n)} \leq 2^{n+q}(\gamma\alpha)^q|Q_j|$,
4. $\int_{Q_j} b_j(x) \, dx = 0$, and
5. $\|b\|_{L^q(\mathbb{R}^n)} \leq 2^{n+q} \|f\|_{L^q(\mathbb{R}^n)}$ and $\|b\|_{L^1(\mathbb{R}^n)} \leq 2(\gamma\alpha)^{-q}\|f\|_{L^q(\mathbb{R}^n)}^q$.

Now,

$$|\{(Tf) > \alpha\}| \leq \left|\left\{|Tg| > \frac{\alpha}{2}\right\}\right| + \left|\left\{|Tb| > \frac{\alpha}{2}\right\}\right|.$$

Assume first that $s < \infty$. Choose $\gamma = (B + [K]_{L^q'})^{-1}$. Using Chebyshev's inequality, the bound of T on $L^s(\mathbb{R}^n)$, property (1), and trivial estimates, we have that

$$\left|\left\{|Tg| > \frac{\alpha}{2}\right\}\right| \leq 2^s\alpha^{-s}\|Tg\|_{L^s(\mathbb{R}^n)}^s \leq (2B)^s\alpha^{-s}\|g\|_{L^s(\mathbb{R}^n)}^s \leq 2^{s-n+\frac{n}{q}}B^s\alpha^{-s}(\gamma\alpha)^s\|g\|_{L^q(\mathbb{R}^n)}^q \leq 2^{s-n+\frac{n}{q}}(B + [K]_{L^q'})^s\alpha^{-q}\|f\|_{L^q(\mathbb{R}^n)}^q.$$

We next control the second term. Let c_j denote the center of Q_j, let $Q_j^* := Q(c_j, 2\sqrt{n}l(Q_j))$ be the cube centered at c_j and having side length $2\sqrt{n}$ times the side length of Q_j, and set $\Omega^* := \bigcup_{j=1}^{\infty} Q_j^*$. Then

$$\left|\left\{|Tb| > \frac{\alpha}{2}\right\}\right| \leq |\Omega^*| + \left|\left\{x \in \mathbb{R}^n \setminus \Omega^*: |Tb(x)| > \frac{\alpha}{2}\right\}\right|.$$

Notice that since $|Q_j^*| = (2\sqrt{n})^n|Q_j|$ and by property (2), we have

$$|\Omega^*| \leq \sum_{j=1}^{\infty} |Q_j^*| = (2\sqrt{n})^n \sum_{j=1}^{\infty} |Q_j| \leq (2\sqrt{n})^n(B + [K]_{L^q'})^n\alpha^{-q}\|f\|_{L^q(\mathbb{R}^n)}^q.$$
It remains to control the last term. Use Chebyshev’s inequality, property (4), Fubini’s theorem, Hölder’s inequality, property (3), and property (2) to estimate

$$\left| \left\{ R^n \setminus \Omega^*: |Tb| > \frac{\alpha}{2} \right\} \right| \leq 2\alpha^{-1} \int_{R^n \setminus \Omega^*} |Tb(x)| \, dx$$

$$\leq 2\alpha^{-1} \sum_{j=1}^{\infty} \int_{R^n \setminus \Omega^*} |Tb_j(x)| \, dx$$

$$\leq 2\alpha^{-1} \sum_{j=1}^{\infty} \left(\int_{R^n \setminus \Omega^*} \left| \int K(x-y) - K(x-c_j) \, dx \right| |b_j(y)| \, dy \right) \|b_j\|_{L^q}$$

$$\leq 2\alpha^{-1} \sup_{j \in \mathbb{N}} \left(\int_{R^n \setminus \Omega^*} \left| K(x-\cdot) - K(x-c_j) \right| \, dx \right) \|b_j\|_{L^q}$$

$$\leq 2\alpha^{-1} \gamma^2 \gamma \sup_{j \in \mathbb{N}} \left(\int_{R^n \setminus \Omega^*} \left| K(x-\cdot) - K(x-c_j) \right| \, dx \right) \|b_j\|_{L^q}$$

For each j, setting $R_j = \sqrt[n]{n}(Q_j)$, we have

$$Q_j \subseteq B(c_j, R_j) \subseteq B(c_j, 2R_j) \subseteq Q_j^*,$$

where $B(x,r)$ denotes the ball centered at x and with radius r. Then the factor involving the supremum is less than or equal to

$$\sup_{j \in \mathbb{N}} \left(\int_{B(c_j, R_j)} \left(\int_{R^n \setminus B(c_j, 2R_j)} \left| K(x-y) - K(x-c_j) \right| \, dx \right) \frac{\gamma^q \, dy}{|Q_j|} \right)^{\frac{1}{q}},$$

which is bounded by $(\frac{\sqrt{n}}{2})^n v_n|K|_{H^q}$ by changing variables $x' = x - c_j$, $y' = y - c_j$ and by replacing the supremum over R_j by the supremum over all $R > 0$.

Putting all of the estimates together, we get

$$\left| \left\{ |Tf| > \alpha \right\} \right| \leq \left(2^{s-n} + \frac{n^s}{\sqrt[n]{n}} + 2^\frac{n}{\gamma} + 2^{\frac{n^2}{2} - n} \right) (B + |K|_{H^q})^{\gamma-q} \|f\|_{L^q(R^n)}.$$
3. Method of Nazarov, Treil, and Volberg

We provide a second proof of Theorem 1. This proof is motivated by the argument given by Nazarov, Treil, and Volberg in [11]. See also [15–17] for other applications of this technique.

Proof. Fix $f \in L^q(\mathbb{R}^n)$ and $\alpha > 0$. We will show that

$$|\{|Tf| > \alpha\}| \leq C_{n,s,q}(B + [K]_{H^q})^q\alpha^{-q}\|f\|_{L^q(\mathbb{R}^n)}^q.$$

By density, we may assume f is a nonnegative continuous function with compact support. Set

$$\Omega := \{M(f^q) > (\gamma\alpha)^q\},$$

where $\gamma > 0$ is to be chosen later and where M denotes the Hardy-Littlewood maximal operator. Apply a Whitney decomposition to write

$$\Omega = \bigcup_{j=1}^{\infty} Q_j,$$

a disjoint union of dyadic cubes where

$$2\text{diam}(Q_j) \leq d(Q_j, \mathbb{R}^n \setminus \Omega) \leq 8\text{diam}(Q_j).$$

Put

$$g := f \mathbb{1}_{\mathbb{R}^n \setminus \Omega}, \quad b := f \mathbb{1}_\Omega, \quad \text{and} \quad b_j := f \mathbb{1}_{Q_j}.$$

Then

$$f = g + b = g + \sum_{j=1}^{\infty} b_j,$$

where we claim that

1. $\|g\|_{L^\infty(\mathbb{R}^n)} \leq \gamma\alpha$ and $\|g\|_{L^q(\mathbb{R}^n)} \leq \|f\|_{L^q(\mathbb{R}^n)}$,
2. the b_j are supported on pairwise disjoint cubes Q_j satisfying

$$\sum_{j=1}^{\infty} |Q_j| \leq 3^n(\gamma\alpha)^{-q}\|f\|_{L^q(\mathbb{R}^n)}^q,$$

3. $\|b_j\|_{L^q(\mathbb{R}^n)}^q \leq (17\sqrt{n})^n(\gamma\alpha)^q|Q_j|$, and
4. $\|b\|_{L^q(\mathbb{R}^n)} \leq \|f\|_{L^q(\mathbb{R}^n)}$ and $\|b\|_{L^1(\mathbb{R}^n)} \leq (17\sqrt{n})^{1-q}3^n(\gamma\alpha)^{1-q}\|f\|_{L^q(\mathbb{R}^n)}^q$.

Indeed, since for any $x \notin \Omega$, we have

$$|g(x)|^q = |f(x)|^q \leq M(f^q)(x) \leq (\gamma\alpha)^q,$$

it follows that $\|g\|_{L^\infty(\mathbb{R}^n)} \leq \gamma\alpha$. Since g is a restriction of f, we have $\|g\|_{L^q(\mathbb{R}^n)} \leq \|f\|_{L^q(\mathbb{R}^n)}$, and so (1) holds. Using the weak-type $(1, 1)$ bound for M with $\|M\|_{L^1(\mathbb{R}^n) \to L^{1,\infty}(\mathbb{R}^n)} \leq 3^n$, we obtain property (2) as follows

$$\sum_{j=1}^{\infty} |Q_j| = |\Omega| \leq 3^n(\gamma\alpha)^{-q}\|f\|_{L^q(\mathbb{R}^n)}^q.$$

Addressing (3) and (4), let $Q_j^* := Q(c_j, 17\sqrt{n}|Q_j|)$ be the cube with the same center as Q_j but side length $17\sqrt{n}$ times as large. Then $Q_j^* \cap (\mathbb{R}^n \setminus \Omega) \neq \emptyset$, so there is a point $x \in Q_j^*$ such
that $M(f^q)(x) \leq (\gamma \alpha)^q$. In particular, $\int_{Q_j} |f(y)|^q dy \leq (\gamma \alpha)^q |Q_j^*|$. Since $|Q_j^*| = (17\sqrt{n})^n |Q_j|$, we have
\[
\|b_j\|_{L^n(\mathbb{R}^n)}^q = \int_{Q_j} |f(y)|^q dy \leq \int_{Q_j^*} |f(y)|^q dy \leq (\gamma \alpha)^q |Q_j| = (17\sqrt{n})^n(\gamma \alpha)^q |Q_j|.
\]
This proves (3). We use Hölder’s inequality, property (3), and property (2) to justify property (4)
\[
\|b\|_{L^1(\mathbb{R}^n)} = \sum_{j=1}^\infty \|b_j\|_{L^1(\mathbb{R}^n)} \leq \sum_{j=1}^\infty \|b_j\|_{L^n(\mathbb{R}^n)} |Q_j|^\frac{1}{q} \leq (17\sqrt{n})^n(\gamma \alpha) \sum_{j=1}^\infty |Q_j| \leq (17\sqrt{n})^n 3^n(\gamma \alpha)^{1-q} \|f\|_{L^q(\mathbb{R}^n)}.
\]
Now,
\[
|\{TF > \alpha\}| \leq \left|\{Tg > \frac{\alpha}{2}\}\right| + \left|\{Tb > \frac{\alpha}{2}\}\right|.
\]
Assume first that $s < \infty$. Choose $\gamma = (B + |K|_{H^s})^{-1}$. Use Chebyshev’s inequality, the bound of T on $L^s(\mathbb{R}^n)$, and property (1) to see
\[
\left|\{Tg > \frac{\alpha}{2}\}\right| \leq 2^s \alpha^{-s} \|Tg\|_{L^s(\mathbb{R}^n)} \leq (2B)^s \alpha^{-s} \|g\|_{L^s(\mathbb{R}^n)} \leq (2B)^s (\gamma \alpha)^{s-q} \alpha^{-s} \|g\|_{L^q(\mathbb{R}^n)} \leq 2^s (B + |K|_{H^s})^q \alpha^{-q} \|f\|_{L^q(\mathbb{R}^n)}.
\]
We will now control the second term. Let E_j be a concentric dilate of Q_j; precisely,
\[
E_j := Q(c_j, r_j),
\]
where c_j is the center of Q_j and $r_j > 0$ is chosen so that $|E_j| = \frac{1}{(17\sqrt{n})^n |\gamma \alpha|} \int_{Q_j} b_j(x) \, dx$. Note that such E_j exist since the function $r \mapsto |Q(x, r)|$ is continuous for each $x \in \mathbb{R}^n$. Applying Hölder’s inequality and property (3), we have
\[
|E_j| = \frac{1}{(17\sqrt{n})^n |\gamma \alpha|} \int_{Q_j} b_j(x) \, dx \leq \frac{1}{(17\sqrt{n})^n |\gamma \alpha|} |Q_j|^{\frac{1}{q}} \|b_j\|_{L^q(\mathbb{R}^n)} \leq |Q_j|.
\]
Since E_j is a cube with the same center as Q_j and since $|E_j| \leq |Q_j|$, the containment $E_j \subseteq Q_j$ holds. In particular, the E_j are pairwise disjoint. Set
\[
E := \bigcup_{j=1}^\infty E_j.
\]
Then
\[
\left|\left\{Tb > \frac{\alpha}{2}\right\}\right| \leq I + II + III,
\]
where

\[I = |\Omega|, \]
\[II = \left\{ x \in \mathbb{R}^n \setminus \Omega : \left| T \left(b - (17\sqrt{n})^{\frac{2}{3}} \gamma \alpha \mathbb{1}_{E} \right)(x) \right| > \frac{\alpha}{4} \right\}, \text{ and} \]
\[III = \left\{ (17\sqrt{n})^{\frac{2}{3}} \gamma \alpha |T(\mathbb{1})| > \frac{\alpha}{4} \right\}. \]

The control of I follows from property (2),

\[|\Omega| = \sum_{j=1}^{\infty} \leq 3^n (B + [K]_{H^\alpha}) \|f\|_{L^q(\mathbb{R}^n)}. \]

For II, use Chebyshev’s inequality, the fact that \(\int_{Q_j} b_j(y) - (17\sqrt{n})^{\frac{2}{3}} \gamma \alpha \mathbb{1}_{E_j}(y) \, dy = 0 \), Fubini’s theorem, and Hölder’s inequality to estimate

\[II \leq 4\alpha^{-1} \int_{\mathbb{R}^n \setminus \Omega} \left| T \left(b - (17\sqrt{n})^{\frac{2}{3}} \gamma \alpha \mathbb{1}_{E} \right)(x) \right| \, dx \]
\[\leq 4\alpha^{-1} \sum_{j=1}^{\infty} \int_{\mathbb{R}^n \setminus \Omega} \left| T \left(b_j - (17\sqrt{n})^{\frac{2}{3}} \gamma \alpha \mathbb{1}_{E_j} \right)(x) \right| \, dx \]
\[\leq 4\alpha^{-1} \sum_{j=1}^{\infty} \int_{\mathbb{R}^n \setminus \Omega} \int_{Q_j} |K(x - y) - K(x - c_j)| \left| b_j(y) - (17\sqrt{n})^{\frac{2}{3}} \gamma \alpha \mathbb{1}_{E_j}(y) \right| \, dy \, dx \]
\[= 4\alpha^{-1} \sum_{j=1}^{\infty} \int_{\mathbb{R}^n \setminus \Omega} \left(\int_{Q_j} |K(x - y) - K(x - c_j)| \, dx \right) \left| b_j(y) - (17\sqrt{n})^{\frac{2}{3}} \gamma \alpha \mathbb{1}_{E_j}(y) \right| \, dy \]
\[\leq 4\alpha^{-1} \sum_{j=1}^{\infty} \left\| \int_{\mathbb{R}^n \setminus \Omega} |K(x - y) - K(x - c_j)| \, dx \right\|_{L^{q'}(Q_j)} \left\| b_j - (17\sqrt{n})^{\frac{2}{3}} \gamma \alpha \mathbb{1}_{E_j} \right\|_{L^q(\mathbb{R}^n)} \]
\[\leq 4\alpha^{-1} \sup_{j \in \mathbb{N}} \left\| \int_{\mathbb{R}^n \setminus \Omega} |K(x - y) - K(x - c_j)| \, dx \right\|_{L^{q'}(Q_j \setminus Q_j)} \]
\[\times \sum_{j=1}^{\infty} |Q_j|^{\frac{1}{q'}} \left\| b_j - (17\sqrt{n})^{\frac{2}{3}} \gamma \alpha \mathbb{1}_{E_j} \right\|_{L^q(\mathbb{R}^n)}. \]

Using the triangle inequality, property (3), and the fact that \(|E_j| \leq |Q_j| \), we have

\[\left\| b_j - (17\sqrt{n})^{\frac{2}{3}} \gamma \alpha \mathbb{1}_{E_j} \right\|_{L^q(\mathbb{R}^n)} \leq \|b_j\|_{L^q(\mathbb{R}^n)} + (17\sqrt{n})^{\frac{2}{3}} \gamma \alpha |E_j|^{\frac{1}{q'}} \leq 2(17\sqrt{n})^{\frac{2}{3}} \gamma \alpha |Q_j|^{\frac{1}{q'}}. \]
Using the above estimate and property (2), we control

$$
\| \mathcal{S}_s \|_{L^q(Q_{1/2}, \mathbb{R}^n)} \lesssim \left(\sum_{j=1}^{\infty} |Q_j| \right)^{\frac{1}{q}} \lesssim \left(\sum_{j=1}^{\infty} |Q_j| \right)^{\frac{1}{q}}.
$$

For each j, setting $R_j = \frac{\sqrt{n}}{2}(l(Q_j))$, we have

$$
Q_j \subseteq B(c_j, R_j) \subseteq B(c_j, 2R_j) \subseteq \Omega.
$$

Then the supremum is bounded by

$$
\sup_{j \in \mathbb{N}} \left[\int_{B(c_j, R_j)} \left(\int_{B(c_j, 2R_j)} |K(x-y) - K(x-c_j)| \right)^{\frac{q'}{q'}} dy \right]^{\frac{1}{q'}} \quad \text{for all } R > 0.
$$

which is bounded by $(\frac{\sqrt{n}}{2})^n v_n [K]_{H^{q'}}$ by changing variables $x' = x-c_j, y' = y-c_j$ and by replacing the supremum over R_j by the supremum over all $R > 0$. Therefore

$$
\| \mathcal{S}_s \|_{L^q(Q_{1/2}, \mathbb{R}^n)} \lesssim (\frac{\sqrt{n}}{2})^n v_n (B + [K]_{H^{q'}}) \| f \|_{L^q(\mathbb{R}^n)}.
$$

To control III, use Chebyshev’s inequality, the bound of T on $L^s(\mathbb{R}^n)$, the fact that $|E| \leq |\Omega|$, and property (2) to estimate

$$
\| \mathcal{S}_s \|_{L^q(Q_{1/2}, \mathbb{R}^n)} \lesssim \left(\sum_{j=1}^{\infty} |Q_j| \right)^{\frac{1}{q}} \lesssim \left(\sum_{j=1}^{\infty} |Q_j| \right)^{\frac{1}{q}}.
$$

Putting the estimates together, we get

$$
|\{ \{T f \} > \alpha \}| \leq \left(2^{s} + 3^{n} + (\frac{3^{n}}{2})^{n} |Q_j| + 4^{s}(17^{n})^{n} \frac{3}{\gamma} \| f \|_{L^q(\mathbb{R}^n)} \right) \left(\frac{B + [K]_{H^{q'}}}{\alpha^q} \right) \| f \|_{L^q(\mathbb{R}^n)}.
$$

Since we assumed that f was nonnegative, we must double the constant above to prove the statement for general $f \in L^q(\mathbb{R}^n)$.

When $s = \infty$, set $\gamma = (4(B + [K]_{H^{q'}}))^{-1}$. Then

$$
\| Tg \|_{L^\infty(\mathbb{R}^n)} \leq B \| g \|_{L^\infty(\mathbb{R}^n)} \leq B \gamma \alpha \leq \frac{\alpha}{4},
$$

so $|\{ \{T g \} > \alpha \}| = 0$. The part of the argument involving the set $\{ |Tb| > \frac{\alpha}{2} \}$ is the same as in the case $s < \infty$. \qed
4. Conclusion

We end with some remarks and an open question.

Remark 3. The conclusions of Theorem 1 and Corollary 1 also follow under the weaker hypothesis that T is bounded from $L^{s,1}(\mathbb{R}^n)$ to $L^{s,\infty}(\mathbb{R}^n)$. Here $L^{s,r}(\mathbb{R}^n)$ is the usual Lorentz space.

Remark 4. As in the case $q = 1$, there are natural vector-valued extensions of Theorem 1 and Corollary 1, in the spirit of [2].

Remark 5. Theorem 1 and Corollary 1 are also valid if the original kernel is not of convolution type. In this setting, we say a kernel K defined on $\mathbb{R}^n \times \mathbb{R}^n \setminus \{(x, y) : x = y\}$ is in H_r if

$$
\sup_{R > 0} \left[\frac{1}{v_n R^n} \int_{|y-y'| \leq R} \left(\int_{|x-y| \geq 2R} |K(x, y) - K(x, y')| \, dx \right)^r \, dy \right]^{\frac{1}{r}} < \infty,
$$

and

$$
\sup_{R > 0} \left[\frac{1}{v_n R^n} \int_{|x-x'| \leq R} \left(\int_{|x-y| \geq 2R} |K(x, y) - K(x', y)| \, dx \right)^r \, dy \right]^{\frac{1}{r}} < \infty,
$$

where v_n is the volume of the unit ball $B(0, 1)$ in \mathbb{R}^n.

As stated in Remark 2 in the introduction, if $q > 1$ and $s < \infty$, then T satisfies strong $L^p(\mathbb{R}^n)$ estimates for $p \in (\min(s', q), \max(q', s))$, and in this case, the interval $(\min(s', q), \max(q', s))$ is properly contained in $(1, \infty)$.

Let $q > 1$ and $s < \infty$. As of this writing, we are unable to establish whether the interval $(\min(s', q), \max(q', s))$ is the largest interval (a, b) for which an operator T with kernel in H_{q_1} is bounded on $L^p(\mathbb{R}^n)$ for all $p \in (a, b)$. This certainly relates to the existence of examples of kernels in H_{q_1} but not in H_{q_2} for $q_1 < q_2$.

References

Loukas Grafakos, Department of Mathematics, University of Missouri, Columbia, MO 65211, USA

E-mail address: grafakosl@missouri.edu

Cody B. Stockdale, Department of Mathematics and Statistics, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA

E-mail address: codystockdale@wustl.edu