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Abstract

We consider the system

∆u−Wu(u) = 0, for u : R2 → R2, W : R2 → R,

where Wu(u) := (∂W/∂u1, . . . , ∂W/∂un)
⊤ is a smooth potential, symmetric

with respect to the u1, u2 axes, possessing two global minima at a± = (±a, 0)
and two connections e±(x1) connecting the minima. We prove that there exists
an equivariant solution u(x1, x2) satisfying

u(x1, x2) → a± as x1 → ±∞,

u(x1, x2) → e±(x1) as x2 → ±∞.

The problem above was first studied by Alama, Bronsard, and Gui [1], under
related hypotheses to the ones introduced in the present paper. At the expense
of one extra symmetry assumption, we avoid their considerations with the nor-
malized energy and strengthen their result. We also provide examples for W .

1. Introduction

The problem
∆u−Wu(u) = 0, for u : R2 → R2, W : R2 → R, (1.1)

has variational structure and it is the Euler–Lagrange equation corresponding to the
functional

J(u) =

∫

R2

{
1

2
|∇u|2 +W (u)

}
dx. (1.2)

An important feature of the problem, and also source of difficulty, is that the action
J is infinite for nonconstant solutions ([3]).

Problem (1.1) originates from geometric evolution and phase transitions. The
relevant dynamical problem is the parabolic system

ût = ε2∆û−Wu(û), for û : R2 → R2.
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Figure 1: The double-well potential W .

This is a gradient flow for the functional

∫

R2

{
1

2
|ε∇u|2 +W (u)

}
dx,

possessing diffused interfaces separating the minima of W .
As was established in [4], there are multiple-well potentialsW for which the (ODE)

connection problem between two phases admits more than one solution,

Ü −Wu(U) = 0, with U(±∞) = a±. (1.3)

To be specific, assume that there exist precisely two connections e±, solutions
to (1.3). As a result, the diffused interfaces separating the phases a+ and a− are
generally made up of two types of ‘material’, e+ and e−, one for each connection (see
Figure 1 in [4]). Simulations show that a wave is generated on the interface, which
propagates and converts it into the type with lesser action

E(U) =

∫

R

(
1

2
|U̇ |2 +W (U)

)
.

The structure of the solution of ût = ε2∆û−Wu(û) close to the interface and near the
junction is genuinely two dimensional (in x1, x2) and well-approximated by a suitably
rescaled solution to the following traveling-wave problem





∆u−Wu(u) = −c
∂u

∂x2
, for u : R2 → R2

u(x1, x2) → a±, as x1 → ±∞,

u(x1, x2) → e±(x1), as x2 → ±∞,

(1.4)

with û(x1, x2, t) = u(x1, x2 − ct), where c is the speed of the wave, which can be
shown to be proportional to E(e+)− E(e−).

Problem (1.4) is rather difficult for c ̸= 0 and is still open. The analogous ODE
problem

{
Ü −Wu(U) = −cU̇

U(±∞) = a±
(1.5)

was recently settled in [8].
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In the case E(e+) = E(e−), the wave becomes a standing wave, c = 0, and (1.4)
reduces to the problem studied in the present paper.

Before stating our main result, we introduce the following hypotheses.

(H1) (Nondegeneracy) The potentialW is C2, W : R2 toR+∪{0}, and has exactly two
nondegenerate global minima a±, a± = (±a, 0) with the properties ∂2W (u) ≥ c2 Id
and |u− a±| ≤ r0, for r0 > 0.

(H2) (Symmetry) W has dihedral symmetry, i.e., W (gu) = W (u), for g ∈ H2
2, and

the solution is equivariant, i.e., u(gx) = gu(x), for all g ∈ H2
2. We assume that

W (u) ≥ max∂C0
W (u), for u outside a certain bounded, H2

2-symmetric, convex set
C0.

(H3) (Q-monotonicity) Let D := {(u1, u2) | u1 > 0}. We assume that there exists
Q : D̄ → R+ ∪ {0}, continuous, with the following properties:

(i) Q is convex

(ii) Q(u) > 0 and Qu(u) ̸= 0 on D − {a±}
(iii) Q(u+ a+) = |u|+H(u)

where H = D̄ → R is a smooth function that satisfies H(0) = Hu(0) = 0, and

Wu(u) ·Qu(u) ≥ 0, on D \ {a+}.

(H4) The ‘scalar’ trajectory e0 which always exists by symmetry1 and as a curve lies
on the u1 axis and connects a+, a−, is assumed not to be a global minimum of the
action

E(U) =

∫

R

{
1

2
|Ux|2 +W (U)

}
dx

among the trajectories connecting a− and a+. It follows by [5] that there exists at
least one pair of connecting trajectories e±, which globally minimize the action in
the class of trajectories that connect a± and with action strictly less than that of the
scalar trajectory, E(e±) < E(e0).

(H5) Let C denote the set of connections between a+ and a− and let M denote the
set of globally minimizing connections. We assume that C is discrete and C \ M is
finite.

Then, under the hypotheses above, we have the following

Theorem 1.1 Under hypotheses (H1)–(H5) there exists a solution to

∆u−Wu(u) = 0, for u = R2 → R2,

which is H2
2-equivariant with the following properties:

(i) u is a positive map, i.e., u(D̄) ⊂ D̄.

1The symmetry of W assumed in (H2) implies that ∂W/∂u2(u1, 0) = 0. Consequently, the
solution of the scalar equation ex1x1 − ∂W/∂u1(e, 0) = 0 with e(±∞) = ±a, extends trivially to a
solution of (1.1) by setting e0(x1) = (e(x1), 0). We normalize it by taking e(0) = 0.
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(ii) |u(x)− a+| < Me−c|x1|, for x1 ≥ 0 and M , c constants.

(iii) limR→∞
1

R

∫
|x2|<R

(
1

2
|∇u|2 +W (u)

)
dx = Emin, where Emin is the value of E

on M.

(iv) The solution u connects a± in the x1-direction and a pair e± from M in the
x2-direction,

lim
x1→±∞

u(x1, x2) = a±,

lim
x2→±∞

u(x1, x2) = e±(x1).

Remark 1.1 Due to the infinity of J mentioned above, the solution is constructed
as a limit of problems on strips of width 2R, with R → ∞. The main difficulty is
showing that the limit

u(x) = lim
R→∞

uR(x)

is nontrivial. The first enemy is u ≡ 0, but this is eliminated by the estimate in (ii).
Another concern is that u could coincide with one of the connections e+ or e−. This
possibility is excluded by symmetry. This last point is considerably more involved
in Alama, Bronsard, and Gui [1], since there only the symmetry with respect to the
u2-axis is assumed. Our method of proof in broad lines follows [7].

Two related open problems are the following.

Multiplicity question. If M has k pairs of connections, then is it true that problem
(1.1) has k distinct solutions uk with

ui(x1, x2) → a±, as x1 → ±∞,

ui(x1, x2) → e±i (x2), as x2 → ±∞,

for i = 1, . . . , k?

Diffeomorphism question Is it true that the solution constructed in this paper is a
global diffeomorphism, one-to-one, of R2 onto the region on the u1–u2 plane bounded
by e+ and e−? Below we provide explicit examples of W . We note that the region
bounded by the connections is convex for certain choices of the parameters.

We conclude this introduction by giving examples of potentials W satisfying the
hypotheses (H1)–(H5).

Example 1.1 Consider the potential

W1(z) =

����
z2 − 1

z2 + ε2

����
2

, for 0 < ε < ∞, (1.6)

where z = u1 + iu2, u = (u1, u2). The potential W1 has two global minima at
a± = (±1, 0) and obviously has the symmetry (H2). It has been shown in [4] that
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there exist exactly three trajectories connecting −1 with 1, eε+, e
ε
−, and eε0, with eε+, e

ε
−

reflections of each other with respect to the u1-axis and with eε0 lying on the u1-
axis (see Figure 2a). Moreover, E(eε±) < E(eε0) for 0 < ε < ε∗ = 0.4416 . . . and
E(eε±) > E(eε0) for ε > ε∗. In more detail, the trajectories eε± are determined by the
equation

u2 +
1 + ε2

4ε
ln

(
(u2 − ε)2 + u2

1

(u2 + ε)2 + u2
1

)
= 0

and

E(eε0) =
1√
2

(
1 + ε2

ε
(π − arctan ε)− ε

)
, E(eε±) =

1√
2

(
2 +

2(1 + ε2)

ε
arctan ε

)
.

Modifying W1 near the poles ±εi allows us to produce a C∞ potential W̃ pos-
sessing the above trajectories. Clearly, the potential W̃ satisfies the hypotheses (H1),
(H2), (H4), and (H5). For explaining the Q-monotonicity of W , condition (H3), we
consider for the moment the hypothesis

Wu(u) · (u− a+) ≥ 0, for u ∈ D. (H3*)

Hypothesis (H3*) corresponds to the choice Q(u) = |u−a+| and states the monotonic-
ity of W along rays emanating from a+.

For example, in the case when W is a center at the origin, (H3∗) is never satisfied.
On the other hand, the existence of a convex Q which satisfies (H3) appears very
plausible for centers and saddles but it would require proof. Our theorem produces
an entire solution which appears to map the plane into the region bounded by the
two symmetric connections.

Example 1.2 Consider the potential

W2(z) =

����
z2 − 1

z2 + ε21

����
2 ����

z2 − 1

z2 + ε22

����
2

, for 0 ≤ ε1 ≤ ε2 < ∞, (1.7)

where z = u1 + iu2, u = (u1, u2). The potential W2 has global minima at a± =
(±1, 0) and obviously satisfies (H2). Applying the theory in [4], we get that for
ε1 > 0, there exist precisely five connecting orbits between a+ and a−, which we
denote by e1±(ε1, ε2), e

2
±(ε1, ε2), and e0(ε1, ε2). We denote by e0 the ‘scalar’ connection

mentioned in (H4) that lies on the u1-axis, while the rest of the connections are
symmetric in pairs with respect to the reflection u2 7→ −u2 (see Figure 3a) and are
determined by the equation

u2 −
(ε21 + 1)2

4ε1(ε2 − ε21)
ln

(
ε1 − u2)

2 + u2
1

(u2 + ε1)2 + u2
1

)
+

(ε21 + 1)2

4ε2(ε2 − ε21)
ln

(
(ε2 − u2)

2 + u2
1

(u2 + ε2)2 + u2
1

)
= 0.

In addition, by applying [4], the action of each orbit can be calculated explicitly.

E0 := E(e0) =
1√
2

����2−
(ε21 + 1)2

ε1(ε22 − ε21)
arctan ε1 +

(ε22 + 1)2

ε2(ε22 − ε21)
arctan ε2

− (ε22 + 1)2π

2ε2(ε22 − ε21)
+

(ε21 + 1)2π

2ε1(ε22 − ε21)

����,
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Figure 2: The figure on the left shows a computation of the trajectories eε± for the
potential W1, for 0 < ε < ∞. We note that eε± tend to the unit circle, as ε → 0,
while their envelope, as ε → ∞, is given by u2

1 = u2
2/3 + 1. The disc-like boundary

shown in the figure corresponds to ε =
√
3/6 < ε∗ = 0.4416 . . . The region bounded

by eε± ceases to be convex for e =
√
3. On the right we show the level sets of W1(z)

for ε =
√
3/6 < ε∗ = 0.4416 . . . The existence of a Q such that Qu ·Wu ≥ 0 in D is

geometrically plausible. (Numerical results due to G. Paschalides.)

EI := E(e1±) =
1√
2

����2−
(ε22 + 1)2

ε2(ε22 − ε21)
arctan ε2

+
(ε21 + 1)2

ε1(ε22 − ε21)
arctan ε1 +

(ε22 + 1)2π

2ε2(ε22 − ε21)

����,

EII := E(e2±) =
1√
2

����2 +
(ε22 + 1)2

ε2(ε22 − ε21)
arctan ε2 −

(ε21 + 1)2

ε1(ε22 − ε21)
arctan ε1

���� .

We observe that e20∪e2+ form the boundary of a region which increases unboundedly
as ε2 → ∞ but approaches a limiting region as ε2 → 0, always enclosing all poles
(0,±εki), for k = 1, 2. On the other hand, e1+ ∪ e1− form the boundary of an interior
region which contains only one pair of poles and approaches limiting regions as ε2 → 0
and ε2 → ∞.

We note that

E0(ε1, ε2) →





∞, as ε1 → 0,
finite limits, as ε1, ε2 → ε∗ ̸= 0
and also as ε1 → ∞ or ε2 → ∞.

EI(ε1, ε2) →
{

∞, as ε2 − ε1 → 0,
finite limits, as ε1 → 0, ε2 → ∞.

EII(ε1, ε2) →
{

finite limits, as ε2 → 0,
∞, as ε2 → ∞.
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Figure 3: The figure on the left shows a computation of the trajecto-
ries e1±(ε1, ε2), e

2
±(ε1, ε2) for the potential W2, for ε1 fixed and equal to

ε∗1 =

√√
6−1
2 −

√
6−1
2 and ε2 = (σ(ε∗1),+∞). It can be seen that the inner region

approaches a limiting shape as ε2 → 0. On the right are the level sets of W2(z) for
ε1 = ε∗1 and ε2 = σ(ε∗1). (Numerical results due to G. Paschalides.)

From the previous relations, we get that

EI > EII, as ε2 → 0 (with ε1 held constant),

EI < EII, as ε2 → ∞ (with ε1 held constant).

It then follows easily that there exists a continuous function ε1 7→ σ∗(ε1) and ε∗1 > 0
such that

EII(ε1,σ
∗(ε1)) = EI(ε1,σ

∗(ε1)) < E0(ε1,σ
∗(ε1)), (1.8)

for 0 ≤ ε1 < ε∗1. Thus, #m = 4 and #C = 5.
The theorem applies to C∞ modifications ofW2 with ε2 = σ∗(ε1), 0 ≤ ε1 < ε∗1, and

produces an H2
2 equivariant solution, apparently not unique, which has the property

that

u(x1, x2) → ei+(x1) and u(x1,−x2) → ei−(x1), as x2 → +∞,

for i = 1, 2. We expect that for the example at hand it should be possible to prove
that there exist two distinct solutions ui satisfying

lim
x2→±∞

ui(x1, x2) = ei±(x1), for i = 1, 2,

each mapping the plane R2 diffeomorphically to the region bounded by the corre-
sponding connections.
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2. The constrained problem (H1)

Let
ΩR,µ = {(x1, x2) | |x1| < µR, |x2| < R}

and
C+

R,µ,η = {(x1, x2) ∈ ΩR,µ | ηR ≤ x1 ≤ µR} ,

where R ∈ [1,∞), µ ∈ [1,+∞], 1/2 < η < µ, and

CR,µ,η = {(x1, x2) ∈ ΩR,µ | −µR ≤ x1 ≤ −ηR}.

Finally, the domain ΩR,∞, for µ = ∞ is the strip |x2| < R. Consider the equivariant
Sobolev space

W 1,2
E (ΩR,µ) = {u : ΩR,µ → R2 | u ∈ W 1,2(ΩR,µ), u H2

2-equivariant}.

We consider, for r < r0 fixed, the set

U c
R,µ := {u ∈ W 1,2

E (ΩR,µ) | |u(x)− α±| ≤ r, a.e. x ∈ C±
R,µ,η} (2.1)

and the functional

JR,µ(u) =

∫

ΩR,µ

{
1

2
|∇u|2 +W (u)

}
dx.

Proposition 2.1 Let 1 ≤ R < ∞, 1 ≤ µ ≤ ∞, 1/2 < η ≤ µ, and r < r0 fixed, where
r0 as in (H1). Then, the problem

min
Uc

R,µ

∫

ΩR,µ

{
1

2
|∇u|2 +W (u)

}
dx := min

Uc
R,µ

JR,µ (2.2)

has a solution uR,µ ∈ W 1,2
E (ΩR,µ) for µ < ∞ and uR,∞ ∈ (W 1,2

E )loc(ΩR,∞)

Proof. For µ < ∞, we fix R and µ and define the affine function uaff : ΩR,µ → R2,
such that

uaff(x) :=





a−, for x1 ∈ [−µR,−1],

1− x1

2
a− +

1 + x1

2
a+, for x1 ∈ [−1, 1],

a+, for x1 ∈ [1, µR].

(2.3)

The function uaff belongs to U c
R,µ for every R ≥ 1, µ ≥ η, and satisfies the estimate

JR,µ(uaff) < CR. (2.4)

Since W ≥ 0, it follows that 0 ≤ infUc
R,µ

JR,µ < JR(uaff) < CR, where, without loss of

generality, we assumed the middle inequality to be strict. Let {un} be a minimizing
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sequence of JR,µ, that is, JR,µ(un) → infUc
R,µ

JR,µ. For the sequence {un} we have

the following estimates





(i)

∫

ΩR,µ

1

2
|∇un |2 dx < JR,µ(uaff) < CR,

(ii)

∫

ΩR,µ

|un|2 dx < C(R,µ),

(2.5)

where in (2.5)(ii) C(R, µ) denotes a constant depending on R, µ. Then, there exists
a subsequence, by weak compactness, which we still denote by {un}, such that

un ⇀ u, weakly in W 1,2
E (ΩR,µ).

By lower semi-continuity in L2
E(ΩR,µ), it follows that

lim inf
n→∞

∫

ΩR,µ

|∇un|2 dx ≥
∫

ΩR,µ

|∇u|2 dx (2.6)

and by the compactness of the embedding W 1,2
E (ΩR,µ) ⊂⊂ L2

E(ΩR,µ) and Fatou’s
lemma, we have

lim inf
n→∞

∫

ΩR,µ

W (un) dx ≥
∫

ΩR,µ

W (u) dx. (2.7)

For handling the µ = ∞ case, consider a family of rectangles [−m,m] × [−R,R],
m = 1, 3, . . . First, construct a sequence minimizing J over W 1,2(ΩR,∞) functions
restricted to the m = 1 rectangle. Next, consider a subsequence of the previous se-
quence restricted to them = 2 rectangle and minimizing J overW 1,2(ΩR,∞) functions
restricted to the m = 2 rectangle, and so on (via ((2.6)-type of estimates).

By a diagonal argument one obtains a subsequence {um} which converges weakly in

W 1,2
loc (ΩR,∞) to some u. Utilizing the compactness of the embedding W 1,2

loc ,→ L2
loc,

we may assume that um → u a.e. (at the expense of taking a further subsequence).
Now {inf JR,µ} is a decreasing sequence in µ and clearly inf JR,µ ≥ inf JR,∞. That
actually inf JR,µ → inf JR,∞ as µ → ∞ follows from the fact that C∞ functions with
compact support in R× [−R,R] are dense in W 1,2(ΩR,∞). Therefore,

inf JR,∞ = lim inf
µ→∞

∫

ΩR,µ

(
1

2
|∇um|2 +W (um)

)
dx

≥
∫

ΩR,∞

(
1

2
|∇u|2 +W (u)

)
dx,

where in the last inequality we utilize Fatou’s lemma. The proof is complete.

3. The positivity property

Let V be a real Euclidean vector space, and let O(V ) stand for the orthogonal group.
For every finite subgroup G of O(V ) a fundamental region is defined as a set F with
the following properties.
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1 F is open in V ,

2 F ∩ TF = ∅ if Id ̸= T ∈ G,

3 V = ∪{(TF ) | T ∈ G},
where with the overbar we denote the closure of the set. The fundamental region F
can be chosen to be convex, actually a simplex (see [11]). More generally, if X is a
subset of V , invariant under G, then a subset D is a fundamental domain if it is of
the form

D = X ∩ F.

If G = H2
2, a fundamental region is F = {(u1, u2) | u1 ≥ 0, u2 ≥ 0}. For X = ΩR,µ,

we take as a fundamental domain the set Ω1
R,µ = ΩR,µ ∩ F .

Proposition 3.1 (H2) Let uR,µ, for R,µ ∈ [1,∞], be the minimizing function of
the constrained problem (2.2). Then, there exists u∗

R,µ ∈ U c
R,µ with the properties

{
J(u∗

R,µ) ≤ J(uR,µ),

u∗
R,µ(Ω

1
R,µ) ⊂ F.

(3.1)

Proof. Set

Λu :=





u, u ∈ F

T−1
1 u, u ∈ T1(F )

(T2T1)
−1u, u ∈ T2T1(F ) = S(F )

T−1
2 u, u ∈ T2(F ).

(3.2)

Clearly, Λ maps R2 into F . Also, it can be checked that

|Λ(uA)− Λ(uB)| ≤ |uA − uB |, (3.3)

where | · | is the Euclidean norm.

Next, we define the operator

(Lu)(x) := Λu(x), for x ∈ Ω1
R,µ, (3.4)

and extend by equivariance on ΩR,µ. We will show that

L : U c
R,µ → U c

R,µ, (3.5)

which means that L preserves Sobolev equivariance and the constraint.

We begin by verifying that L preserves Sobolev equivariance. By standard approxi-
mation arguments, the only source of difficulty is the possible loss of continuity along
the symmetry lines where the gluing in the definition of L takes place. We check two
cases and leave the rest to the reader.

We consider x+, x̄, x− as in Figure 4a with T1x
+ = x− and |x+ − x−| small, and

T1x̄ = x̄. We would like to show that |(Lu)(x+)−(Lu)(x−)| is small for |u(x+)−u(x−)|
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Figure 4: The points x+, x̄, x−, and the corresponding u(x−), u(x̄), u(x+).

small. By equivariance, T1(u(x̄)) = u(T1x̄) = u(x̄) and therefore, u(x̄) lies on the u2-
axis. We assume that u(x−), u(x̄), u(x+) are as in Figure 4. Then,

Lu(x−) = Λu(x−) = T2u(x
−),

Lu(x+) = T1Λu(T
−1
1 x+) = T1Λu(x

−) = T1T2u(x
−) = T2T1u(x

−) = T2u(x
+),

Lu(x−) = Λu(x−) = T1T2u(x
−) = T2T1u(x

−) = T2u(x
+),

Lu(x+) = T1Λu(T
−1
1 x+) = T1Λu(x

−) = T1T1T2u(x
−) = T2u(x

−),

consequently, continuity is verified in these cases. The verification of the constraint
is straightforward. Finally, we define

u∗
R,µ := LuR,µ

and verify that u∗
R,µ does not increase the functional J . Indeed,

W ((Lu)(x)) = W (gΛu(g−1x)) = W (Λu(g−1x)) = W (u(g−1x))

and consequently, the term W of the functional J does not change since Ti is an
isometry. On the other hand, the term

∫
ΩR,µ

|∇u|2 dx does not increase by ((3.3)).

Corollary 3.1 (H1, H2) There is a minimizer uR,µ of the constrained problem that
satisfies

uR,µ(Ω
1
R,µ) ⊆ F. (3.6)

Next, we need an a priori bound.

Lemma 3.1 There is an M > 0, independent of R, µ, n, such that

|uR,µ(x)| < M, for x ∈ ΩR,µ.

Proof. For the convex set C0 introduced in (H1), we consider the mapping Λ : R2 →
C0,

Λu :=

{
Pu, if u /∈ C0,

u, if u ∈ C0,
(3.7)
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where Pu is the projection of u on ∂C0. By (H1), W (Λu) ≤ W (u). Also, the mapping
Λ is nonexpansive in the Euclidean norm. We set (Lu)(x) := Λu(x) and notice that
L preserves equivariance, honors the constraint, and reduces JR,µ. It follows that the
minimizer uR,µ of the constrained problem takes values in C0. Thus (3.7) holds.

4. Local estimates

Given u : x ∈ R2 → R2, we write u(x)− a± in polar form,

u(x)− a± = |u(x)− a±| u(x)− a±

|u(x)− a±| = ρ±(x)n±(x),

with ρ± : x ∈ R2 → R+ and n± : x ∈ R2 → S1. So, if u ∈ U c
R,µ, we have

u(x) = a+ + ρ+(x)n+(x), with ρ+(x) ≤ r, for x ∈ C+
R,µ,η,

and similarly for x ∈ C−
R,µ,η. We notice that the polar form is well defined for ρ(x) ̸= 0.

For u ∈ W 1,2
loc , it follows that ρ, n ∈ W 1,2

loc and moreover, |∇u|2 = |∇ρ|2 + ρ2|∇n|2.
On the other hand, on the set {u = a}, we have |∇u| = 0 a.e. Therefore, for any
measurable set S, we have

∫

S

|∇u|2 dx =

∫

S∩{ρ>0}

{
|∇ρ(x)|2 + ρ2(x)|∇n(x)|2

}
dx.

Lemma 4.1 (H1) Suppose uR,µ is a minimizer of the constrained problem (2.2).
Then, the following estimate holds

ρ+R,µ(x) ≤ r
cosh(c(Rµ− x1))

cosh(c(µ− η)R)
, a.e. x ∈ C+

R,µ,η, (4.1)

where c as in (H1), with an analogous estimate for x ∈ C−
R,µ,η. Here, 1 ≤ R < ∞,

1 ≤ µ ≤ ∞, and 1/2 < η < µ, for r < r0, η, r0 fixed.

Proof. Suppose that {
∆w − c2w ≥ 0,

Bw ≤ 0,
(4.2)

weakly in the space W 1,2
# (C+

R,µ,η), the latter defined as the completion in the W 1,2

norm of the space

{
f ∈ C∞(C+

R,µ,η) ∩W 1,2(C+
R,µ,η) | f+ = 0 on {x1 = ηR}

}
,

where

Bw :=





w, on x1 = ηR,

∂w

∂n
, on ∂LC

+
R,µ,η (:= ∂C+

R,µ,η \ {x1 = ηR}),
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and (4.2) is meant in the sense

∫

CR,µ,η

{
∇w∇ϕ+ c2wϕ

}
dx ≤ 0, (4.3)

for w, ϕ ∈ W 1,2
# (C+

R,µ,η), with ϕ ≥ 0 a.e. Then, we claim that

w ≤ 0, a.e. in C+
R,µ,η. (4.4)

To prove the claim, by density we can take ϕ := w+ in (4.3) and so we can conclude
that

0 ≥
∫

C+
R,µ,η

{
∇w∇w+ + c2ww+

}
dx =

∫

C+
R,µ,η

{
|∇w+|2 + c2|w+|2

}
dx = 0,

thus, w+ = 0 in C+
R,µ,η. Next we will show that

∆ρR,µ ≥ ρR,µc
2 weakly in W 1,2(C+

R,µ,η). (4.5)

For showing (4.5), we consider uε(x) = uR,µ(x) + εp̂(x)n(x), with p̂(x) ≤ 0 in C+
R,µ,η,

p̂ ∈ C∞
0 (C+

R,µ,η). We notice that |uε(x)−a±| = |ρR,µ(x)+εp̂(x)| ≤ r in C±
R,µ,η. Then,

d

dε

���
ε=0

J(uε) ≥ 0 ⇔ d

dε

���
ε=0

∫

ΩR,µ,η

{
1

2
|∇uε|2 +W (uε)

}
dx ≥ 0

⇔
∫

CR,µ,η

{
∇ρR,µ∇p̂+ ρR,µp̂|∇n(x)|2 + p̂Wu(uR,µ)n(x)

}
dx ≥ 0,

from which it follows that
∫

CR,µ

{∇ρR,µ∇p̂+ p̂Wu(uR,µ)n(x)}dx ≥ 0.

Utilizing (H1), we obtain

∫

CR,µ

{
∇ρR,µ∇p̂+ c2p̂ρR,µ

}
dx ≥ 0,

and therefore (4.5) has been established.

Next we will show that ρR,µ < r a.e. in the interior of CR,µ,η from which it will follow,
up to a modification on a null set, that uR,µ is a classical solution of

∆uR,µ −Wu(uR,µ) = 0, in the interior of CR,µ,η. (4.6)

Suppose now for the sake of contradiction that ρR,µ = r on a set A of positive measure.
However, this is in conflict with ∆ρR,µ ≥ c2ρR,µ in W 1,2(CR,µ) since ∇ρR,µ = 0 a.e.
on this set A. Therefore, ρR,µ(x) < r a.e. in C+

R,µ,η as required.
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In the following we show that

∂ρR,n

∂n
= 0 on ∂LCR,µ,η \ {A,B}, (4.7)

where A, B are the corners. For x∗ in a subset of points ∂LCR,µ \ {A,B} such that
ρR,µ(x

∗) < r a.e. on it, the natural boundary conditions hold classically and so (4.7)
is valid. Therefore, the case of interest is when ρR,µ(x

∗) = r. We notice that in
the interior of CR,µ,η, (4.6) is satisfied classically and that uR,µ is regular. From the
bound |uR,µ| < constant, which holds uniformly in the interior of CR,µ,η, we obtain by
elliptic regularity that |∇ρR,µ| < constant on the boundary with a similar estimate on
the second-order derivatives. Consequently, ρR,µ(x) is continuous at x

∗ and the outer
normal derivative ∂ρR,µ/∂n exists at x∗. We know that ∆ρR,µ ≥ c2ρR,µ classically
in the interior of CR,µ and by the preceding argument, ρR,µ is continuous at x = x∗

and ∂ρR,µ/∂n(x
∗) exists. Applying the Hopf lemma, we obtain

∂ρR,µ

∂n
(x∗) > 0. (4.8)

We now set uε(x) = uR,µ + εp̂(x)n, p̂ ≤ 0 smooth with supp(p̂) ⊆ B(x∗; δ) ∩ CR,µ,η,
0 < δ ≪ 1. Then, uε ∈ U c

R,µ and

0 ≤ d

dε

���
ε=0

∫

ΩR,µ

{
1

2
|∇uε|2 +W (uε)

}
dx =

∫

∂ΩR,µ

∂ρR,µ

∂n
p̂dS, (4.9)

from (4.6), which however is in contradiction to (4.8). Therefore, ρR,µ(x
∗) = r cannot

possibly hold and so (4.7) is valid.

To conclude, we set

v := ρ+R,µ(x)− r
cosh(c(Rµ− x1))

cosh(c(µ− η)R)
.

We will show that v satisfies (4.2). By the preceding argument, it follows that ∆v −
c2v ≥ 0 classically in the interior of C+

R,µ,η. Thus, given ϕ as in the definition of (4.5),
we have

0 ≤
∫

C+
R,µ

{
∆v − c2v

}
ϕ dx =

∫

C+
R,µ

{
−∇v∇ϕ− c2ϕ

}
dx+

∫

∂LCR,µ,η

∂v

∂n
ϕ dS

=

∫

C+
R,µ

{
−∇v∇ϕ− c2vϕ

}
dx,

from (4.7). Finally, we note that the points A, B are negligible in the boundary
integral since |∇v| < constant, up to the boundary. The proof of lemma is complete.

Taking µ → ∞ in Lemma 4.1, we obtain

Corollary 4.1 (H1) For µ = ∞, the minimizer uR satisfies the estimate

ρ+R(x) ≤ re−c(x1−ηR), for x1 ≥ ηR.
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Figure 5:

5. Global estimates (H1, H2, H3)

Theorem 5.1 (H1, H2, H3) Suppose r < r0 and µ = ∞ as in the definition of the
constrained problem in Section 2. We denote the minimizer by uR and the domain by
ΩR respectively, and assume that it possesses the property in Corollary 3.1, that is,
uR is positive.

Then, there exists R0 > 0, such that for x ∈ ΩR the estimate

|uR(x)− a+| < Me−c|x1|, for x1 ≥ 0, R ≥ R0, (5.1)

holds, where M is a constant depending on the set C0 in (H2).

Proof. Step 1. We begin by noting that by Lemma 3.1, we may assume that uR(x) ∈
C0.

Step 2. Suppose Q(u) a C2 convex function as in (H3). We can check easily that the
following holds true

∆Q(u(x)) = tr
{
(∂2Q)(∇u)(∇u)⊤

}
+Qu(u(x)) ·∆u(x) ≥ Qu(u(x)) ·∆u(x). (5.2)

Step 3. Let uR be the minimizer. Then,

Q(uR(x)) ≤ Ax1 +B =: U(x1, ηR), for x1 ∈ [0, ηR], x = (x1, x2), (5.3)

where A = (r−B)/ηR, B a bound, and Q(uR(x)) ≤ B, for x ∈ ΩR, provided by Step
1.

To prove (5.3), from (5.2) in ΩR ∩ {0 ≤ x1 ≤ ηR}, we have

∆Q(uR(x)) ≥ Qu(uR(x)) ·Wu(uR(x)) ≥ 0

by (5.2), (3.6), (H3). Then, (5.3) follows by the maximum principle.

We shall denote by U(x1; θ) the function ((r − B)/θ)x1 + B. Then, Q(uR(x)) ≤
U(x1; ηR), for 0 ≤ x1 ≤ ηR =: x̄′

0. Next, we consider the equation

U(x1; ηR) = r0. (5.4)
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which has the unique solution

x̄0 =
B − r0
B − r

ηR = δηR = δηR, with δ =
B − r0
B − r

, 0 < δ < 1.

By the definition of Q, ρ+R ≤ r0, x̄0 ≤ x1 from which we obtain, via Lemma 4.1, for
x̄0 in the place of ηR,

ρ+R(x) ≤ r0e
−c(x1−x̄0) =: r0σ(x1; x̄0), for x̄0 ≤ x1. (5.5)

Now we continue the iteration. Let x̄′
1 be the solution to r0σ(x1; x̄0) = r. As before,

we have Q(uR(x)) ≤ U(x1; x̄
′
1), for x1 ∈ [0, x̄′

1], and therefore ρ+R(x) ≤ r0, for x1 ∈
[x̄1, µR], where x̄1 the solution to U(x1; x̄

′
1) = r0. Consequently, we have the estimate

ρ+R(x) ≤ r0σ(x1; x̄1), for x̄1 ≤ x1 ≤ µR.

We denote the solution to r0σ(x1; x̄1) = r by x̄′
2 and keep going, thus generating two

sequences {x̄i}, {x̄′
i}, for i = 1, 2, . . .

The iteration is terminated if for some i, the slope of the line U(x1; x̄
′
i), which is

(r − B)/x̄′
i, gets equal or less than −cr0, the lower bound of the slope of r0σ(x1; x̄i)

at the point x̄i. Consequently, since x̄′
i is decreasing as i → ∞ and

����
d

dx1

���
x̄′
i

σ(x1; x̄i)

���� ≤ c,

we may let i → ∞. The iteration is terminated independently of R and at a distance

lim
i→∞

x̄′
i =

B − r

cr0
=: δ∗

from the line x1 = 0. Moreover, we have

ρ+R(x) ≤ r0σ(x1; lim
i→∞

x̄i) and lim
i→∞

x̄i ≤ x1,

from which it follows that ρ+R(x) ≤ r, for x1 ≥ δ∗ and x1. Thus,

ρ+R(x) ≤ r0e
−c(x1−ηR), for δ∗ ≤ x1.

Note that

R0 = − ln(r/2r0)

cδ
, δ =

B − r0
B − r

, δ∗ =
B − r

cr0
.

The proof is complete.

6. Proof of Theorem 1.1 (H1, H2, H3, H4, H5)

In this section we will work with the infinite strip, which we denote by ΩR. The
constrained problem in Section 2 provides a minimizer uR which may be assumed to
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possess the positivity property by Corollary 3.1. Moreover, uR satisfies the uniform
exponential bound (5.1). By standard local estimates, the following limit exists.

u(x) = lim
Rn→∞

urn(x). (6.1)

From (5.1) we obtain

|u(x)− a+| < Me−c|x1|, for x1 ≥ 0.

Parts (i) and (ii) of Theorem 1.1 have been established.

Step 1. (Upper Bound)

JΩR(u) ≤ C + 2REmin, (6.2)

where

JΩR(v) :=

∫

ΩR

{
1

2
|∇v|2 +W (v)

}
dx.

First we establish
JΩR

(uR) ≤ C + 2REmin. (6.3)

For this purpose consider the comparison map

ũ(x1, x2) =





e+(x1), for x2 ≥ 1,

(
1 + x2

2

)
e+(x1) +

(
1− x2

2

)
e−(x1), for |x2| ≤ 1,

e−(x1), for x2 ≤ −1.

Note that ũ is positive, equivariant, and satisfies the pointwise constraint in Proposi-
tion 2.1. Consequently

JΩR
(uR) ≤ JΩR

(ũ) ≤ C + 2REmin. (6.4)

Next fix R, choose R′ > R, otherwise arbitrary, and notice that

JΩ′
R
(uR′) = JΩR

(uR′) +

∫

R<|x2|<R′

{
1

2
|∇uR′ |2 +W (uR′)

}
dx. (6.5)

Set
V R′
x2

(x1) = uR′(x1, x2),

and notice that by the exponential estimate (5.1) and the variational characterization
of e± [5, Th. 3.7] we have the estimate

E(V R′
x2

) ≥ E(e±) = Emin. (6.6)

Hence
∫∫

R<|x2<R′

{
1

2
|∇uR′ |2 +W (uR′)

}
dx1dx2

≥
∫

R<|x2|<R′
E(V R′

x2
) dx2 ≥ 2Emin(R

′ −R). (6.7)
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On the other hand
JΩ′

R
(uR′) ≤ C + 2EminR

′. (6.8)

Thus by (6.5) we obtain

C + 2R′Emin ≥ JΩR(uR′ + 2(R′ −R)Emin,

from which we obtain

C + 2REmin ≥ JΩR
(uR′), for R′ > R. (6.9)

Taking R′ → ∞, we obtain (6.2).

Step 2. (Lower Bound)
JΩR

(u) ≥ 2REmin. (6.10)

To see this, first notice that by (6.6)
∫

|x2|<R

E(V R′
x2

) dx2 ≥ Emin(2R), for R′ > R,

that is, ∫∫

|x2|<R

{
1

2
|∇uR′ |2 +W (uR′)

}
dx1dx2 ≥ Emin(2R). (6.11)

By utilizing the exponential estimate (5.1) and elliptic estimates (on the gradient)
one can apply the dominated convergence theorem and obtain

lim
R′→∞

∫∫

|x2|<R

{
1

2
|∇uR′ |2 +W (uR′)

}
dx1dx2

=

∫∫

|x2|<R

{
1

2
|∇u|2 +W (u)

}
dx1dx2.

Thus, by (6.11) we obtain (6.10).
Combining Step 1. and Step 2. above we obtain part (iii) of Theorem 1.1. Notice

that (H4) has not been invoked so far.

Step 3. ∫∫

R2

����
∂u

∂x2

����
2

dx1dx2 < ∞, (6.12)

from [1, (5.9)].
First we establish ∫

ΩR

����
∂uR

∂x2

����
2

dx < C, (6.13)

from which (6.12) follows immediately, since for a given compact set K ⊂ ΩR, it
follows that

∫
K
|∂uR/∂x2|2dx < C, for C independent of R and K.

Note that

C + 2EminE
(6.2)

≥ JΩR
(uR) =

∫

ΩR

1

2

����
∂uR

∂x2

����
2

dx+

∫

|x2|<R

E(V R
x2
) dx2

≥
∫

ΩR

1

2

����
∂uR

∂x2

����
2

dx+

∫

|x2|<R

Emin dx2,
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and by the exponential estimate and the variational characterization of the elements
of M in [5], the last quantity equals

∫

ΩR

1

2

����
∂uR

∂x2

����
2

dx+ 2REmin,

hence (6.13) follows.

Step 4. From (6.12) we obtain that given any sequence xn
2 → +∞, there is a

subsequence xn
2
′ such that

u(x1, x
n
2
′) → θ(x1), (6.14)

where
∂2θ

∂x2
1

−Wu(θ) = 0. (6.15)

This is via standard elliptic estimates (see [1, Lemma 5.2]).
The exponential estimate for u(x1, x2) implies that

θ(±∞) = a±, (6.16)

that is, θ is a connection.
We will establish that the limit as x2 → ∞ exists in (6.14) and that θ ∈ M, that

is, a minimizing connection.
We first observe that at least along a sequence xn

2 → ∞,

u(·, xn
2 ) → M.

Indeed, if not, then
lim inf
|x2|→∞

E(u(·, x2)) > Emin, (6.17)

by the finiteness of C \M, but this is in conflict with the Upper Bound (6.2).
Finally we will show arguing by contradiction that it is not possible to have two

sequences xn1
2 and xn2

2 , tending to ∞, such that

{
u(x1, x

n1
2 ) → θA(x1),

u(x1, x
n2
2 ) → θB(x1),

(6.18)

where θA ∈ M, θB ∈ C, θA ̸= θB .
To continue, we need a few observations on the set of connections C. By symmetry,

we have θ1(0) = 0, θ̇2(0) = 0. By positivity, we have θ̇1(0) ≥ 0. By the equipartition
(first integral), we have

1

2
|θ̇(x1)|2 = W (θ(x1)). (6.19)

Evaluating (6.19) at x1 = 0, we see that θ̇21(0) is determined by (θ1(0), θ2(0)), and

since θ̇1(0) ≥ 0, it is determined completely by c = θ2(0). In conclusion, the set of
relevant connections in (6.18) is an one-parameter family determined by θ2(0). It
follows that

θA2 (0) ̸= θB2 (0). (6.20)
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By hypothesis, C is discrete. Therefore, we can choose c such that,

θA2 (0) < c < θB2 (0),

which does not correspond to any of the connections in C. Now, from (6.18), u2(0, x
n1
2 ) →

θA2 (0) and u2(0, x
n2
2 ) → θB2 (0). Therefore, by continuity there exists xn3

2 → +∞ such
that u2(0, x

n3
2 ) = c. By (6.14), there is a subsequence of {xn3

2 }, say xn4
2 → +∞, such

that u(x1, x
n4
2 ) → θ(x1). Therefore, u2(0, x

n4
2 ) → θ2(0) = c, which is a contradiction.

Thus, we established that (6.18) is not possible.
In conclusion we established that

u(x1, x2) → θ(x1), for θ ∈ M. (6.21)

The proof of Theorem 1.1 is complete.
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